COSE215: Theory of Computation

Lecture 9 — Properties of Regular Languages (2):

Pumping Lemma

Hakjoo Oh 2017 Spring

Some Fundamental Questions

So far, we have studied regular languages. But, some fundamental questions remain:

- Are all languages regular?
 - lacksquare No, e.g., $L=\{a^nb^n\mid n\geq 0\}$ is not regular.
- How to prove that a language is non-regular? Two methods:
 - Direct proof by Pigeonhole principle.
 - 2 By using the pumping lemma.

Example 1: $L = \{a^nb^n \mid n \geq 0\}$ is non-regular

Direct proof:

- Proof by contradiction.
- ullet The basic tool: Pigeonhole principle: If you put more than n pigeons into n holes, then some hole has more than one pigeon.
- Assume L is regular.
- ullet Then there is a DFA $M=(Q,\Sigma,\delta,q_0,F)$ recognizing L.
- Define:
 - Pigeons = $\{a^n \mid n \ge 0\} = \{a, aa, aaa, \ldots\}$ Pholes = states in Q
- Put pigeon a^n into hole $\delta^*(q_0, a^n)$
 - ightharpoonup i.e., the hole corresponding to the state reached by input a^n
- We have |Q| holes but more than |Q| pigeons (actually, infinitely many).
- ullet So, two pigeons must be put in the same hole, say a^i and a^j , where i
 eq j.
 - ▶ That is, a^i and a^j lead to the same state.
- ullet Then, since M accepts a^ib^i , it also accepts a^jb^i , which is a contradiction.
- ullet Thus, the original assumption that L is regular is false,
- ullet That is, $oldsymbol{L}$ is non-regular.

Example 2: $L = \{ww \mid w \in \{0,1\}^*\}$ is non-regular

- Show by contradiction, using Pigeonhole principle.
- ullet Assume L is regular, so there is a DFA $M=(Q,\Sigma,\delta,q_0,F)$ recognizing L.
- Define:
 - Pigeons = $\{0^i1 \mid i \geq 0\} = \{1,01,001,\ldots\}$
 - lacksquare Holes = states in $oldsymbol{Q}$
- ullet Put pigeon string 0^i1 into hole $\delta^*(q_0,0^i1)$
- By Pigeonhole principle, two pigeons share a hole, say $0^i 1$ and $0^j 1$, where $i \neq j$.
- So 0^i1 and 0^j1 lead to the same state.
- ullet M accepts 0^i10^i1 , so does 0^j10^i1 , which is a contradiction.

The Pumping Lemma

Theorem (Pumping Lemma)

For any regular language L there exists an integer n, such that for all $x \in L$ with $|x| \ge n$, there exist $u, v, w \in \Sigma^*$, such that

- $\mathbf{0} \ x = uvw$
- $|uv| \leq n$
- $|v| \ge 1$
- $ext{ or all } i \geq 0, \, uv^i w \in L.$

Proof of the Pumping Lemma

- ullet Let M be a DFA for L. Suppose M has n states.
- Take $x \in L$ with $|x| \ge n$, let m = |x|:

$$x = a_1 a_2 \dots a_m$$

- ullet Let $p_i=\delta^*(q_0,a_1a_2\ldots a_i).$ Note $p_0=q_0$ and p_m is a final state.
- Consider the first n+1 states: $p_0p_1\dots p_n$.
- ullet By Pigeonhole principle, two p_i and p_j with $0 \leq i < j \leq n$ share a state, i.e., $p_i = p_j$.
- Break x = uvw:
 - $u = a_1 a_2 \dots a_i$
 - $v = a_{i+1}a_{i+2}\dots a_j$
- ullet Note that $\delta^*(p_0,u)=p_i$, $\delta^*(p_i,v)=p_i$, and $\delta^*(p_i,w)=p_m$.
- ullet Thus, $\delta^*(p_0,uw)=p_m$, $\delta^*(p_0,uvw)=p_m$, $\delta(p_0,uv^2w)=p_m$, and so on.

Using Pumping Lemma to show non-regularity

- If L is regular, L satisfies pumping lemma?
- ullet If L satisfies pumping lemma, L is regular?
- ullet If L does not satisfy pumping lemma, then L is non-regular?

Pumping lemma can be used only for proving languages not to be regular.

Prove that $L = \{0^i 1^i \mid i \geq 0\}$ is not regular.

- Show that pumping lemma (P.L.) does not hold.
- ullet If L is regular, then by P.L. there exists n such that ...
- Now let $x = 0^n 1^n$
- $ullet x \in L$ and $|x| \geq n$, so by P.L. there exist u,v,w such that (1)–(4) hold.
- We show that for all u, v, w (1)–(4) do not all hold.
- If (1), (2), (3) hold then $x=0^n1^n=uvw$ with $|uv|\leq n$ and $|v|\geq 1$.
- ullet So, $u=0^s, v=0^t, w=0^p1^n$ with

$$s+t \le n, \quad t \ge 1, \quad p \ge 0, \quad s+t+p=n.$$

• Then (4) fails for i = 0:

$$uv^0w = uw = 0^s0^p1^n = 0^{s+p}1^n \not\in L$$
, since $s + p \neq n$

Prove that $L = \{ww^R \mid w \in \{a,b\}^*\}$ is not regular.

- Show that pumping lemma (P.L.) does not hold.
- ullet If $oldsymbol{L}$ is regular, then by P.L. there exists $oldsymbol{n}$ such that ...
- Now let $x = a^n b^n b^n a^n$
- $ullet x \in L$ and $|x| \geq n$, so by P.L. there exist u,v,w such that (1)–(4) hold.
- We show that for all u, v, w (1)–(4) do not all hold.
- If (1), (2), (3) hold then $x=a^nb^nb^na^n=uvw$ with $|uv|\leq n$ and $|v|\geq 1$.
- ullet So, $u=a^s, v=a^t, w=a^pb^nb^na^n$ with

$$s+t \leq n, \quad t \geq 1, \quad p \geq 0, \quad s+t+p=n.$$

• Then (4) fails for i = 0:

 $uv^0w=uw=a^sa^pb^nb^na^n=a^{s+p}b^nb^na^n
ot\in L,$ since s+p
eq n

Prove that $L = \{w \in \{a,b\}^* \mid n_a(w) < n_b(w)\}$ is not regular.

- Show that pumping lemma (P.L.) does not hold.
- ullet If $oldsymbol{L}$ is regular, then by P.L. there exists $oldsymbol{n}$ such that ...
- Now let $x = a^n b^{n+1}$
- $ullet x \in L$ and $|x| \geq n$, so by P.L. there exist u,v,w such that (1)–(4) hold.
- We show that for all u, v, w (1)–(4) do not all hold.
- If (1), (2), (3) hold then $x=a^nb^{n+1}=uvw$ with $|uv|\leq n$ and $|v|\geq 1$.
- ullet So, $u=a^s, v=a^t, w=a^pb^{n+1}$ with

$$s+t\leq n,\quad t\geq 1,\quad p\geq 0,\quad s+t+p=n.$$

• Then (4) fails for i = 2:

$$uv^2w = a^s a^{2t} a^p b^{n+1} = a^{s+2t+p} b^{n+1} \not\in L,$$

since $s + 2t + p \ge n + 1$.

Prove that $L = \{a^n \mid n \text{ is a perfect square}\}$ is not regular.

- Show that pumping lemma (P.L.) does not hold.
- ullet If $oldsymbol{L}$ is regular, then by P.L. there exists $oldsymbol{n}$ such that ...
- Now let $x = a^{n^2}$
- $ullet x \in L$ and $|x| \geq n$, so by P.L. there exist u,v,w such that (1)–(4) hold.
- We show that for all u, v, w (1)–(4) do not all hold.
- ullet If (1), (2), (3) hold then $x=a^{n^2}=uvw$ with $|uv|\leq n$ and $|v|\geq 1$.
- Then, clearly $v=a^k$ with $1\leq k\leq n$.
- Then (4) fails for i = 0:

$$uv^0w = a^{n^2-k} \not\in L$$
, since $n^2 - k > (n-1)^2$.

Prove that $L=\{a^nb^kc^{n+k}\mid n\geq 0 \land k\geq 0\}$ is not regular.

• It is not difficult to apply the pumping lemma directly, but it is even easier to use closure under homomorphism. Take

$$h(a)=a, \quad h(b)=a, \quad h(c)=c,$$

then

$$h(L) = \{a^{n+k}c^{n+k} \mid n+k \ge 0\} = \{a^ib^i \mid i \ge 0\}.$$

We know this language is not regular.

ullet Also, we know that if a language L_1 is regular, then $h(L_1)$ is regular. Taking its contraposition, we conclude that L is not regular.

cf) The converse of pumping lemma is not true

$$L = \{c^m a^n b^n \mid m \ge 1, n \ge 1\}$$

- L satisfies the pumping lemma.
 - For any $x \in L$ of length ≥ 1 , we can take $u = \epsilon$, v = the first letter of x (c), and w = the rest of x.
- However, L is not regular.
 - lacktriangleright We can prove this using a general version of pumping lemma: For any regular language L, there exists $n\geq 1$ such that for every string $uvw\in L$ with $|w|\geq p$ such that
 - $\star uwv = uxyzv$
 - $\star |xy| \le n$
 - $\star |y| \geq 1$
 - \star For all $i \geq 0$, $uxy^izv \in L$.
- Still, the converse of the general lemma is not true.
 - Languages that satisfy the lemma can still be non-regular.
 - For a necessary and sufficient condition to be regular, refer to Myhill-Nerode theorem.