COSE215: Theory of Computation

Lecture 8 — Properties of Regular Languages (1)

Hakjoo Oh 2017 Spring

Properties of Regular Languages

- Closure properties
- "Pumping Lemma" for regular languages

Closure Properties

If one (or several) languages are regular, then certain related languages are also regualr. E.g.,

- ullet Given regular languages L_1 and L_2 , $L_1 \cup L_2$ is also regular.
- ullet Given regular languages L_1 and L_2 , $L_1\cap L_2$ is also regular.

The family of regular languages is *closed* under union and intersection.

Closure Properties

Regular languages are closed under:

- union
- difference
- complementation
- intersection
- reversal
- homomorphism
- . . .

Closure under Union

Theorem

If L and M are regular languages, then so is $L \cup M$.

Closure under Difference

Theorem

If L and M are regular languages, then so is L-M.

Closure under Complementation

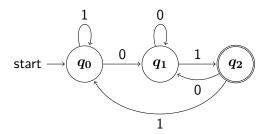
Theorem

If L is a regular language over alphabet Σ , then $\overline{L}=\Sigma^*-L$ is also a regular language.

Let A be a DFA that accepts L, i.e., L=L(A) for DFA $A=(Q,\Sigma,\delta,q_0,F).$ Define a DFA B as follows:

$$B=(Q,\Sigma,\delta,q_0,Q-F)$$

ex)



Closure under Intersection

Theorem

If L and M are regular languages, then so is $L \cap M$.

- ullet Non-constructive proof: $L\cap M=\overline{\overline{L}\cup\overline{M}}$
- ullet Constructive proof: construct an automaton that accepts $L\cap M$.

Closure under Intersection

Theorem

If L and M are regular languages, then so is $L \cap M$.

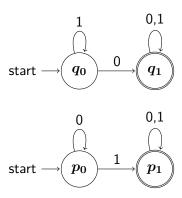
- ullet Non-constructive proof: $L\cap M=\overline{\overline{L}\cup\overline{M}}$
- ullet Constructive proof: construct an automaton that accepts $L\cap M$.

(Constructive proof) Let $A_1=(Q,\Sigma,\delta_1,q_0,F_1)$ and $A_2=(P,\Sigma,\delta_2,p_0,F_2)$ be DFAs for L and M, respectively. Define the automaton A:

$$A = (Q \times P, \Sigma, \delta, (q_0, p_0), F_1 \times F_2)$$

where $\delta((q,p),a)=(\delta_1(q,a),\delta_2(p,a))$. Then, $L(A)=L(A_1)\cap L(A_2)$.

Example



Closure under Reversal

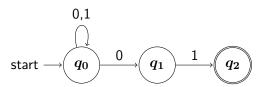
Theorem

If L is a regular language, then so is L^R .

Let A be a $\epsilon\text{-NFA}$ that accepts L, then we can construct an automaton that accepts L^R as follows:

- lacktriangle Reverse all the arcs in the transition graph for $m{A}$.
- Make the start state of A be the only accepting state for the new automaton.
- **③** Create a new start state p_0 with transitions on ϵ to all the accepting states of A.

Example



Closure under Homomorphism

Definition (Homomorphism)

Suppose Σ and Γ are alphabets. Then a function

$$h:\Sigma o\Gamma^*$$

is called a homomorphism. For a given string $w=a_1a_2\cdots a_n$,

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

For a language L,

$$h(L) = \{h(w) \mid w \in L\}.$$

Theorem

If L is a regular language over Σ and h is a homomorphism on Σ , then h(L) is also regular.

Example

Let $\Sigma = \{0,1\}$ and $\Gamma = \{a,b\}$ and define h by

$$h(0)=ab, \qquad h(1)=\epsilon$$

Given any string of 0's and 1's, it replaces all 0's by the string ab and replaces all 1's by the empty string. For example,

$$h(0011) = abab.$$

If L is a language of regular expression 10^*1 , i.e., any number of 0's surrounded by 1's. Then h(L) is the language $(ab)^*$.