COSE215: Theory of Computation Lecture 7 — Regular Expressions and Finite Automata

> Hakjoo Oh 2017 Spring

Equivalence between Regular Expressions and Finite Automata

Theorem (From RE to FA)

Every language defined by a regular expression is also defined by a finite automaton.

Theorem (From FA to RE)

Every language defined by some finite automata is also defined by a regular expression.

Conversion From Regular Expression to Finite Automata

Given a regular expression R, we show that L(R) is accepted by an ϵ -NFA such that

- it has exactly one accepting state,
- no arcs into the initial state, and
- no arcs out of the accepting state.

Conversion from Regular Expression to Finite Automata

The conversion is by structural induction on R. Base cases:

- $R = \epsilon$:
- $R = \emptyset$:
- $R = a (\in \Sigma)$:

From Regular Expression to Finite Automata

Inductive cases:

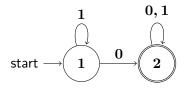
- $R = R_1 + R_2$:
- $R = R_1 R_2$:
- $R = R_1^*$:

Examples

- 0 · 1*:
- $(0+1) \cdot 0 \cdot 1$:
- $(0+1)^* \cdot 1 \cdot (0+1)$:

From Automata to Regular Expression

Consider DFA D whose states are $\{1,2,\ldots,n\}$, e.g.,

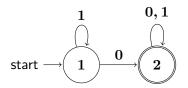


- The idea is to progressively accept more paths in the transition graph.
- Let $R_{ij}^{(k)}$ be the name of a regular expression whose language is the set of strings w such that w is the label of a path from state i to state j in D, and that path has no intermediate node whose number is greater than k.

From Automata to Regular Expressions

When k = 0: • When $i \neq j$, consider every arc $i \stackrel{a}{\rightarrow} j$ in D. If there is no such arc, then $R_{ij}^{(0)} = \emptyset$. 2 If there is exactly one such arc, then $R_{ii}^{(0)} = a$. **3** If there are multiple arcs $i \stackrel{a_1}{\rightarrow} j$, $i \stackrel{a_2}{\rightarrow} j$, ..., $i \stackrel{a_k}{\rightarrow} j$, then $R_{ii}^{(0)} = a_1 + a_2 + \dots + a_k.$ 2 When i = j, consider every arc $i \stackrel{a}{\rightarrow} i$: • If there is no such arc, then $R_{ij}^{(0)} = \epsilon$. **②** If there is exactly one such arc, then $R_{ii}^{(0)} = \epsilon + a$. **3** If there are multiple arcs $i \stackrel{a_1}{\rightarrow} i$, $i \stackrel{a_2}{\rightarrow} i$, ..., $i \stackrel{a_k}{\rightarrow} i$, then $R_{ii}^{(0)} = \epsilon + a_1 + a_2 + \dots + a_k.$

Example



$$egin{array}{rcl} R^{(0)}_{11}&=\ R^{(0)}_{12}&=\ R^{(0)}_{21}&=\ R^{(0)}_{22}&=\ \end{array}$$

From Automata to Regular Expressions

When k > 0:

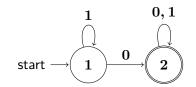
- When the path does not use state k at all. In this case, the label of the path is in the language of $R_{ij}^{(k-1)}$.
- **2** When the path goes through state k at least once.

$$R_{ik}^{(k-1)}(R_{kk}^{(k-1)})^*R_{kj}^{(k-1)}$$

By combining the two cases, we have the expression:

$$R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

Example



$$egin{array}{rcl} R^{(1)}_{11}&=\ R^{(1)}_{12}&=\ R^{(1)}_{21}&=\ R^{(1)}_{22}&=\ \end{array}$$

$$egin{array}{c} R^{(2)}_{11} \ R^{(2)}_{12} \ R^{(2)}_{21} \ R^{(2)}_{21} \ R^{(2)}_{22} \end{array}$$

=