COSE215: Theory of Computation

Lecture 7 - Regular Expressions and Finite Automata

Hakjoo Oh
2017 Spring

Equivalence between Regular Expressions and Finite Automata

Theorem (From RE to FA)

Every language defined by a regular expression is also defined by a finite automaton.

Theorem (From FA to RE)
Every language defined by some finite automata is also defined by a regular expression.

Conversion From Regular Expression to Finite Automata

Given a regular expression R, we show that $L(R)$ is accepted by an ϵ-NFA such that

- it has exactly one accepting state,
- no arcs into the initial state, and
- no arcs out of the accepting state.

Conversion from Regular Expression to Finite Automata

The conversion is by structural induction on \boldsymbol{R}.
Base cases:

- $\boldsymbol{R}=\epsilon$:
- $\boldsymbol{R}=\emptyset$:
- $R=a(\in \Sigma)$:

From Regular Expression to Finite Automata

Inductive cases:

- $R=R_{1}+R_{2}$:
- $R=R_{1} R_{2}$:
- $R=R_{1}^{*}$:

Examples

- 0.1*:
- $(0+1) \cdot 0 \cdot 1$:
- $(0+1)^{*} \cdot 1 \cdot(0+1)$:

From Automata to Regular Expression

Consider DFA D whose states are $\{1,2, \ldots, n\}$, e.g.,

- The idea is to progressively accept more paths in the transition graph.
- Let $\boldsymbol{R}_{i j}^{(\boldsymbol{k})}$ be the name of a regular expression whose language is the set of strings \boldsymbol{w} such that \boldsymbol{w} is the label of a path from state \boldsymbol{i} to state \boldsymbol{j} in \boldsymbol{D}, and that path has no intermediate node whose number is greater than \boldsymbol{k}.

From Automata to Regular Expressions

When $\boldsymbol{k}=\mathbf{0}$:
(1) When $i \neq j$, consider every $\operatorname{arc} i \xrightarrow{a} j$ in \boldsymbol{D}.
(1) If there is no such arc, then $\boldsymbol{R}_{i j}^{(0)}=\emptyset$.
(2) If there is exactly one such arc, then $\boldsymbol{R}_{i j}^{(0)}=\boldsymbol{a}$.
(3) If there are multiple arcs $\boldsymbol{i} \xrightarrow{a_{7}} \boldsymbol{j}, \boldsymbol{i} \xrightarrow{a_{2}} \boldsymbol{j}, \ldots, i \xrightarrow{\boldsymbol{a}_{k}} \boldsymbol{j}$, then $R_{i j}^{(0)}=a_{1}+a_{2}+\cdots+a_{k}$.
(2) When $\boldsymbol{i}=\boldsymbol{j}$, consider every arc $\boldsymbol{i} \xrightarrow{\boldsymbol{a}} \boldsymbol{i}$:
(1) If there is no such arc, then $\boldsymbol{R}_{i j}^{(0)}=\boldsymbol{\epsilon}$.
(2) If there is exactly one such arc, then $\boldsymbol{R}_{\boldsymbol{i j}}^{(0)}=\boldsymbol{\epsilon}+\boldsymbol{a}$.
(3) If there are multiple arcs $i \xrightarrow{a_{7}} i, i \xrightarrow{a_{2}} i, \ldots, i \xrightarrow{a_{k}} i$, then $R_{i j}^{(0)}=\epsilon+a_{1}+a_{2}+\cdots+a_{k}$.

Example

From Automata to Regular Expressions

When $\boldsymbol{k}>\mathbf{0}$:

(1) When the path does not use state \boldsymbol{k} at all. In this case, the label of the path is in the language of $\boldsymbol{R}_{i j}^{(k-1)}$.
(2) When the path goes through state \boldsymbol{k} at least once.

$$
R_{i k}^{(k-1)}\left(R_{k k}^{(k-1)}\right)^{*} R_{k j}^{(k-1)}
$$

By combining the two cases, we have the expression:

$$
R_{i j}^{(k)}=R_{i j}^{(k-1)}+R_{i k}^{(k-1)}\left(R_{k k}^{(k-1)}\right)^{*} R_{k j}^{(k-1)}
$$

Example

$R_{11}^{(1)}=$
$R_{12}^{(1)}=$
$R_{21}^{(1)}=$
$\boldsymbol{R}_{22}^{(1)}=$
$R_{11}^{(2)}=$
$R_{12}^{(2)}=$
$R_{21}^{(2)}=$
$R_{22}^{(2)}=$

