COSE215: Theory of Computation

Lecture 21 - P, NP, and NP-Complete Problems

Hakjoo Oh
2017 Spring

Contents ${ }^{1}$

- The classes $\boldsymbol{\mathcal { P }}$ and $\boldsymbol{\mathcal { N }} \boldsymbol{\mathcal { P }}$
- Reductions
- NP-complete problems
${ }^{1}$ The slides are based on Siddhartha Sen's slides ("P, NP, and NP-Completeness")

Problems Solvable in Polynomial Time

- A Turing machine M is said to be of time complexity $\boldsymbol{T}(\boldsymbol{n})$ if whenever \boldsymbol{M} is given an input \boldsymbol{w} of length $\boldsymbol{n}, \boldsymbol{M}$ halts after making at most $\boldsymbol{T}(\boldsymbol{n})$ moves, regardless of whether or not \boldsymbol{M} accepts.
- E.g., $T(n)=5 n^{2}, T(n)=3^{n}+5 n^{4}$
- Polynomial time: $\boldsymbol{T}(n)=a_{0} n^{k}+a_{1} n^{k-1}+\cdots+a_{k} n+a_{k+1}$
- We say a language L is in class \mathcal{P} if there is some polynomial $\boldsymbol{T}(\boldsymbol{n})$ such that $L=L(M)$ for some deterministic TM M of time complexity $T(n)$.
- Problems solvable in polynomial time are called tractable.
- Many familiar problems in a course on data structures and algorithms have efficient solutions and are generally in \mathcal{P}. E.g., finding a minimum-weight spanning tree (MWST)

Nondeterministic Polynomial Time

- We say a language \boldsymbol{L} is in the class $\boldsymbol{\mathcal { N } \mathcal { P }}$ (nondeterministic polynomial) if there is a nondeterministic TM \boldsymbol{M} and a polynomial time complexity $\boldsymbol{T}(\boldsymbol{n})$ such that $L=L(M)$, and when M is given an input of length n, there are no sequences of more than $T(n)$ moves of \boldsymbol{M}.
- Example: TSP (Travelling Salesman Problem)
- $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$ because every deterministic TM is a nondeterministic TM.
- However, it appears that $\boldsymbol{\mathcal { N } \mathcal { P }}$ contains many problems not in \mathcal{P}.
- A NTM has the ability to guess an exponential number of possible solutions to a problem and check each one in polynomial time in parallel.
- It is one of the deepest open questions whether $\mathcal{P}=\boldsymbol{\mathcal { N }} \mathcal{P}$, i.e., whether in fact everything that can be done in polynomial time by NTM can in fact be done by a DTM in polynomial time, perhaps with a higher-order polynomial.

Implications of $\mathcal{P}=\mathcal{N} \mathcal{P}$

If $P=N P$, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in creative leaps, no fundamental gap between solving a problem and recognizing the solution once its found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss; everyone who could recognize a good investment strategy would be Warren Buffett.

- Scott Aaronson

NP-Complete Problems

- NP-complete problems are the hardest problems in the NP class.
- If any NP-complete problem can be solved in polynomial time, then all problems in NP are solvable in polynomial time.
- How to compare easiness/hardness of problems?

Problem Solving by Reduction

- \boldsymbol{L}_{1} : the language (problem) to solve
- $\boldsymbol{L}_{\mathbf{2}}$: the problem for which we have an algorithm to solve
- Solve \boldsymbol{L}_{1} by reducing \boldsymbol{L}_{1} to $\boldsymbol{L}_{\mathbf{2}}\left(\boldsymbol{L}_{\mathbf{1}} \leq \boldsymbol{L}_{\mathbf{2}}\right)$ via function \boldsymbol{f} :
(1) Convert input x of L_{1} to instance $f(x)$ of L_{2}

$$
\star x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

(2) Apply the algorithm for L_{2} to $f(x)$

- Running time $=$ time to compute $f+$ time to apply algorithm for $\boldsymbol{L}_{\mathbf{2}}$
- We write $L_{1} \leq_{P} L_{\mathbf{2}}$ if $f(\boldsymbol{x})$ is computable in polynomial time

Reductions show easiness/hardness

- To show \boldsymbol{L}_{1} is easy, reduce it to something we know is easy
- $L_{1} \leq e a s y$
- Use algorithm for easy language to decide $\boldsymbol{L}_{\mathbf{1}}$
- To show $\boldsymbol{L}_{\mathbf{1}}$ is hard, reduce something we know is hard to it (e.g., NP-complete problem)
- hard $\leq L_{1}$
- If $\boldsymbol{L}_{\mathbf{1}}$ was easy, hard would be easy too

NP-Complete Problems

We say \boldsymbol{L} is NP-complete if
(1) L is in $\mathcal{N} \mathcal{P}$
(2) For every language \boldsymbol{L}^{\prime} in $\boldsymbol{\mathcal { N } \mathcal { P }}$, there is a polynomial time reduction of \boldsymbol{L}^{\prime} to \boldsymbol{L} (i.e., $\boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$)

The Boolean Satisfiability Problem

Boolean formulas:

$$
\begin{array}{lll}
f \rightarrow & T \mid F \\
& \neg f f \\
& f \wedge f \\
& f \wedge f \\
& f \vee f \\
& f \Longrightarrow f
\end{array}
$$

Example:

$$
x \wedge \neg(y \vee z)
$$

The satisfiability problem (SAT):
Given a boolean expression, is it satisfiable?

Theorem (Cook)
SAT is NP-complete.

Summary

Problems:

- Undecidable
- Decidable
- Tractable (\mathcal{P})
- Intractable

