COSE215: Theory of Computation Lecture 21 — P, NP, and NP-Complete Problems

Hakjoo Oh 2017 Spring

Contents¹

- ullet The classes ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$
- Reductions
- NP-complete problems

 $^1 {\rm The}$ slides are based on Siddhartha Sen's slides ("P, NP, and NP-Completeness")

Problems Solvable in Polynomial Time

• A Turing machine M is said to be of time complexity T(n) if whenever M is given an input w of length n, M halts after making at most T(n) moves, regardless of whether or not M accepts.

• E.g.,
$$T(n) = 5n^2$$
, $T(n) = 3^n + 5n^4$

• Polynomial time: $T(n) = a_0 n^k + a_1 n^{k-1} + \dots + a_k n + a_{k+1}$

- We say a language L is in class P if there is some polynomial T(n) such that L = L(M) for some deterministic TM M of time complexity T(n).
- Problems solvable in polynomial time are called *tractable*.
- Many familiar problems in a course on data structures and algorithms have efficient solutions and are generally in *P*. E.g., finding a minimum-weight spanning tree (MWST)

Nondeterministic Polynomial Time

- We say a language L is in the class \mathcal{NP} (nondeterministic polynomial) if there is a nondeterministic TM M and a polynomial time complexity T(n) such that L = L(M), and when M is given an input of length n, there are no sequences of more than T(n) moves of M.
 - Example: TSP (Travelling Salesman Problem)
- $\mathcal{P} \subseteq \mathcal{NP}$ because every deterministic TM is a nondeterministic TM.
- However, it appears that \mathcal{NP} contains many problems not in \mathcal{P} .
 - A NTM has the ability to guess an exponential number of possible solutions to a problem and check each one in polynomial time in parallel.
- It is one of the deepest open questions whether \$\mathcal{P} = \mathcal{N} \mathcal{P}\$, i.e., whether in fact everything that can be done in polynomial time by NTM can in fact be done by a DTM in polynomial time, perhaps with a higher-order polynomial.

Implications of $\mathcal{P} = \mathcal{N}\mathcal{P}$

If P=NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in creative leaps, no fundamental gap between solving a problem and recognizing the solution once its found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss; everyone who could recognize a good investment strategy would be Warren Buffett.

— Scott Aaronson

NP-Complete Problems

- NP-complete problems are the hardest problems in the NP class.
- If any NP-complete problem can be solved in polynomial time, then all problems in NP are solvable in polynomial time.
- How to compare easiness/hardness of problems?

Problem Solving by Reduction

- L₁: the language (problem) to solve
- L_2 : the problem for which we have an algorithm to solve
- Solve L_1 by reducing L_1 to L_2 ($L_1 \leq L_2$) via function f:
 - Onvert input x of L_1 to instance f(x) of L_2

 $\star \ x \in L_1 \iff f(x) \in L_2$

2 Apply the algorithm for L_2 to f(x)

- ullet Running time = time to compute f + time to apply algorithm for L_2
- We write $L_1 \leq_P L_2$ if f(x) is computable in polynomial time

Reductions show easiness/hardness

- ullet To show L_1 is easy, reduce it to something we know is easy
 - $L_1 \leq easy$
 - Use algorithm for easy language to decide L₁
- To show L_1 is hard, reduce something we know is hard to it (e.g., NP-complete problem)
 - hard $\leq L_1$
 - If L₁ was easy, hard would be easy too

NP-Complete Problems

We say L is NP-complete if

- **1** L is in \mathcal{NP}
- ② For every language L' in NP, there is a polynomial time reduction of L' to L (i.e., L' ≤_P L)

The Boolean Satisfiability Problem

Ĵ

Boolean formulas:

$$egin{array}{rcl} F & \to & T \mid F \ & \mid & \neg f \ & \mid & f \wedge f \ & \mid & f \lor f \ & \mid & f \rightleftharpoons f \ & \mid & f \Longrightarrow f \end{array}$$

Example:

$$x \wedge \neg (y \lor z)$$

The satisfiability problem (SAT):

Given a boolean expression, is it satisfiable?

Theorem (Cook) SAT is NP-complete.

Summary

Problems:

- Undecidable
- Decidable
 - Tractable (\mathcal{P})
 - Intractable