COSE215: Theory of Computation

Lecture 2 - Languages and Grammars

Hakjoo Oh
2017 Spring

Alphabet

A finite, non-empty set of symbols, e.g.,
(1) $\Sigma=\{0,1\}$: the binary alphabet.
(2) $\Sigma=\{a, b, \ldots, z\}$: the set of all lowercase letters.
(3) The set of all ASCII characters.

String

A finite sequence of symbols chosen from an alphabet, e.g.,
(1) $\Sigma=\{0,1\}: 0,1,00,01, \ldots$
(2) $\Sigma=\{a, b, c\}: a, b, c, a b, b c, \ldots$

Notations:

- ϵ : the empty string
- $\boldsymbol{w} \boldsymbol{v}$: the concatenation of \boldsymbol{w} and \boldsymbol{v}
- $\boldsymbol{w}^{\boldsymbol{R}}$: the reverse of \boldsymbol{w}
- $|\boldsymbol{w}|$: the length of string \boldsymbol{w}
- $\boldsymbol{w}=\boldsymbol{v} \boldsymbol{u}: \boldsymbol{v}$ is a prefix and \boldsymbol{u} a suffix of \boldsymbol{w}.
- $\boldsymbol{\Sigma}^{k}$: the set of strings (over $\boldsymbol{\Sigma}$) of length \boldsymbol{k}
- $\Sigma^{*}=\Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \cdots=\bigcup_{k \geq 0} \Sigma^{k}$
- $\Sigma^{+}=\Sigma^{+}=\Sigma^{1} \cup \Sigma^{2} \cup \cdots=\bigcup_{k \geq 1} \Sigma^{k}$

Language

A language \boldsymbol{L} is a set of strings, i.e., $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}\left(\boldsymbol{L} \in \mathbf{2}^{\boldsymbol{\Sigma}^{*}}\right)$
When $\Sigma=\{0,1\}$,

- $L_{1}=\{0,00,001\}$
- $L_{2}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- $L_{3}=\{\epsilon, 01,10,0011,0101,1001, \ldots\}$
- $L_{3}=\{10,11,101,111,1011, \ldots\}$

Language Operations

- union, intersection, difference: $L_{1} \cup L_{2}, \quad L_{1} \cap L_{2}, \quad L_{1}-L_{2}$
- reverse: $L^{R}=\left\{w^{R} \mid w \in L\right\}$
- complement: $\bar{L}=\boldsymbol{\Sigma}^{*}-\boldsymbol{L}$
- concatenation of L_{1} and L_{2} :

$$
L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\}
$$

- power:

$$
\begin{aligned}
L^{0} & =\{\epsilon\} \\
L^{n} & =L^{n-1} L
\end{aligned}
$$

- closures:

$$
\begin{aligned}
& L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots=\bigcup_{i \geq 0} L^{i} \\
& L^{+}=L^{1} \cup L^{2} \cup L^{3} \cup \cdots=\bigcup_{i \geq 1} L^{i}
\end{aligned}
$$

Exercises

(1) Consider $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$.
(1) $L^{2}=$
(2) $L^{R}=$
(2) Prove that $(u v)^{R}=v^{R} u^{R}$ for all $u, v \in \Sigma^{+}$.

Grammar

Definition

A grammar \boldsymbol{G} is a quadruple $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{T}, \boldsymbol{S}, \boldsymbol{P})$:

- V : a finite set of variables (or non-terminal symbols)
- T : a finite set of terminal symbols
- $S \in V$: the start variable
- P: a finite set of productions. A production has the form

$$
x \rightarrow y
$$

where $\boldsymbol{x} \in \boldsymbol{V}$ and $\boldsymbol{y} \in(\boldsymbol{V} \cup \boldsymbol{T})^{*}$.
Example:

$$
\begin{aligned}
& G=(\{S\},\{a, b\}, S, P) \\
& S \rightarrow a S b \\
& S \rightarrow \epsilon
\end{aligned}
$$

Applying productions to strings

- $\boldsymbol{x} \rightarrow \boldsymbol{y}$: replace \boldsymbol{x} by \boldsymbol{y}, e.g., applying $\boldsymbol{x} \rightarrow \boldsymbol{y}$ to the string:

$$
w=u x y
$$

gives

$$
z=u y v
$$

In this case, we write $\boldsymbol{w} \Rightarrow \boldsymbol{z}$.

- $w_{1} \Rightarrow^{*} w_{n}$ iff $w_{1} \Rightarrow w_{2} \Rightarrow \cdots \Rightarrow w_{n}$

Example

$$
\begin{gathered}
G=(\{S\},\{a, b\}, S, P) \\
S \rightarrow a S b \\
S \rightarrow \epsilon
\end{gathered}
$$

- $S \Rightarrow^{*} a a b b$
- $S \Rightarrow^{*}$ aaabbb

A grammar specifies a language

Definition

Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{T}, \boldsymbol{S}, \boldsymbol{P})$ be a grammar. Then the set

$$
L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}
$$

is the language generated by G.

- If $\boldsymbol{w} \in L(G)$, then we say the sequence

$$
S \Rightarrow w_{1} \Rightarrow w_{2} \Rightarrow \cdots \Rightarrow w_{n} \Rightarrow w
$$

a derivation of the sentence \boldsymbol{w}.

- $S, w_{1}, w_{2}, \ldots, w_{n}$: sentential forms.

Example

$$
\begin{aligned}
G= & (\{S\},\{a, b\}, S, P) \\
S & \rightarrow a S b \\
S & \rightarrow \epsilon
\end{aligned}
$$

The language of G is

$$
L(G)=\{\epsilon, a b, a a b b, a a a b b b, a a a a b b b b, \ldots\}=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

