COSE215: Theory of Computation

Lecture 14 — Properties of Context-Free Languages (1)

Hakjoo Oh 2017 Spring

Properties of CFLs

- Normal forms for CFGs
- Pumping lemma for CFLs
- Closure properties for CFLs

Chomsky Normal Form

Definition

A CFG is in Chomsky Normal Form (CNF), if its all productions are of the form

$$A o BC$$
 or $A o a$

Theorem

Every CFL (without ϵ) has a CFG in CNF.

Preliminary Simplications

- Elimination of useless symbols
- 2 Elimination of ϵ -productions
- Elimination of unit productions

Useless Symbols

Definition (Useful/Useless Symbols)

A symbol X is useful for a grammar G=(V,T,S,P) if there is some derivation of the form $S\Rightarrow^*\alpha X\beta\Rightarrow w$, where $w\in T^*$. Otherwise, X is useless.

Eliminating Useless Symbols

- Identify generating and reachable symbols.
 - $lackbox{} X$ is generating if $X \Rightarrow^* w$ for some terminal string w.
 - ▶ X is reachable if $S \Rightarrow^* \alpha X \beta$ for some α and β .
- Remove non-generating symbols, and then non-reachable symbols.

$$egin{array}{lll} S &
ightarrow & AB \mid a \ A &
ightarrow & b \end{array}$$

- Find generating symbols:
- Remove non-generating symbols:
- 3 Find reachable symbols:
- Remove non-reachable symbols:

Correctness of Useless Symbol Elimination

Theorem

Let G=(V,T,S,P) be a CFG and assume that $L(G)\neq\emptyset$. Let G_2 be the grammar obtained by running the following procedure:

- Eliminate non-generating symbols and all productions involving those symbols. Let $G_2=(V_2,T_2,P_2,S)$ be this new grammar.
- **2** Eliminate all symbols that are not reachable in the grammar G_2 .

Then, G_1 has no useless symbols, and $L(G) = L(G_1)$.

Finding Generating and Reachable Symbols

- The sets of generating and reachable symbols are defined inductively.
- We can compute inductive sets via the iterative fixed point algorithm.

Inductive Definition of Generating Symbols

Definition (Generating Symbols)

Let G=(V,T,S,P) be a grammar. The set of generating symbols of G is defined as follows:

- Basis: The set includes every symbol of T.
- Induction: If there is a production $A \to \alpha$ and the set includes every symbol of α , then the set includes A.

Note that the definition is non-constructive.

Computing the Set of Generating Symbols

① Represent the inductive definition by function $F \in 2^{V \cup T} \to 2^{V \cup T}$:

$$F(X) = T \cup \{A \mid A \to \alpha, \alpha \in X\}$$

Apply the iterative fixed point algorithm:

$$ext{fix}(F) = S := \emptyset$$
 $ext{$repeat}$
 $S' := S$
 $S := S \cup F(S)$
 $ext{$until } S = S'$
 $ext{$return } S$

cf) in functional style:

$$\mathsf{fix}(F,S) = \mathsf{if}\; (S = S \cup F(S)) \; \mathsf{then}\; S \; \mathsf{else}\; \mathsf{fix}(F,\, S \cup F(S))$$

$$egin{array}{lll} S &
ightarrow & AB \mid a \ A &
ightarrow & b \end{array}$$

• The fixed point iteration for finding generating symbols:

Inductive Definition of Reachable Symbols

Definition (Reachable Symbols)

Let G=(V,T,S,P) be a grammar. The set of reachable symbols of G is defined as follows:

- ullet Basis: The set includes S.
- Induction: If the set includes A and there is a production $A \to X_1 \dots X_k$, then the set includes X_1, \dots, X_k .

The function $F \in 2^{V \cup T} \to 2^{V \cup T}$:

$$F(X) = \{S\} \cup \bigcup_{A \in X} \{X_1, \ldots, X_k \mid A o X_1 \ldots X_k\}$$

$$egin{array}{lll} S &
ightarrow & AB \mid a \ A &
ightarrow & b \end{array}$$

• The fixed point iteration for finding reachable symbols:

Eliminating ϵ -Productions $(A o \epsilon)$

- Find nullable variables.
- 2 Construct a new grammar, where nullable variables are replaced by ϵ in all possible combinations.

Nullable Variables

Definition

A variable A is *nullable* if $A \Rightarrow^* \epsilon$.

Nullable Variables

Definition

A variable A is *nullable* if $A \Rightarrow^* \epsilon$.

Definition (Inductive version)

Let G=(V,T,S,P) be a grammar. The set of nullable variables of G is defined as follows:

- Basis: If $A \to \epsilon$ is a production of G, then the set includes A.
- Induction: If there is a production $B \to C_1 \dots C_k$, where every C_i is included in the set, then the set includes B.

The function F:

Eliminate ϵ -Productions

Let G=(V,T,S,P) be a grammar. Construct a new grammar

$$(V,T,P_1,S)$$

where P_1 is defined as follows.

For each production $A \to X_1 X_2 \dots X_k$ of P, where $k \ge 1$

- lacktriangledown Put $A o X_1X_2\dots X_k$ into P_1
- ② Put into P_1 all those productions generated by replacing nullable variables by ϵ in all possible combinations. If all X_i 's are nullable, do not put $A \to \epsilon$ into P_1 .

$$\begin{array}{ccc} S & \rightarrow & AB \\ A & \rightarrow & aAA \mid \epsilon \\ B & \rightarrow & bBB \mid \epsilon \end{array}$$

- The set of nullable symbols:
- The new grammar without ϵ -productions:

Eliminating Unit Productions

A unit production is of the form A o B, e.g.,

$$egin{array}{lll} S &
ightarrow & A \ A &
ightarrow & a \mid b \end{array}$$

Eliminating Unit Productions

Given G = (V, T, S, P),

- Find all *unit pairs* of variables (A, B) such that $A \Rightarrow^* B$ using a sequence of unit productions only.
- 2 Define $G_1=(V,T,S,P_1)$ as follows. For each unit pair (A,B), add to P_1 all the productions $A\to \alpha$ where $B\to \alpha$ is a non-unit production in P.

E.g.,

$$egin{array}{lll} S &
ightarrow & A \ A &
ightarrow & a \mid b \end{array}$$

$$\begin{array}{ccc} S & \rightarrow & Aa \mid B \\ B & \rightarrow & A \mid bb \\ A & \rightarrow & a \mid bc \mid B \end{array}$$

- Unit pairs:
- The grammar without unit productions:

Eliminating Unit Productions

Theorem (Correctness)

If grammar G_1 is constructed from grammar G by the algorithm for eliminating unit productions, then $L(G_1) = L(G)$.

Finding Unit Pairs

Definition (Unit Pairs)

Let G=(V,T,S,P) be a grammar. The set of unit pairs is defined as follows:

- Basis: (A, A) is a unit pair for any variable A.
- Induction: Suppose we have determined that (A,B) is a unit pair, and $B \to C$ is a production, where C is a variable. Then (A,C) is a unit pair.

$$F(X) =$$

$$\begin{array}{ccc} S & \rightarrow & Aa \mid B \\ B & \rightarrow & A \mid bb \\ A & \rightarrow & a \mid bc \mid B \end{array}$$

The fixed point computation proceeds as follows:

$$\emptyset$$
, $\{(S,S),(A,A),(B,B)\}$, $\{(S,S),(A,A),(B,B),(S,B),(B,A),(A,B)\}$, $\{(S,S),(A,A),(B,B),(S,B),(B,A),(A,B)\}$

Putting them together

Apply them in the following order:

- **1** Eliminate ϵ -productions
- ② Eliminate unit productions
- Eliminate useless symbols

Theorem

If G is a CFG generating a language that contains at least one string other than ϵ , then there is another CFG G_1 such that $L(G_1) = L(G) - \{\epsilon\}$, and G_1 has no useless symbols, ϵ -productions, or useless symbols.

Proof.

Chomsky Normal Form

Definition (Chomsky Normal Form)

A grammar G is in CNF if all productions in G are either

- lacktriangledown A
 ightarrow BC, where A, B, and C are variables
- $oldsymbol{0} A
 ightarrow a$, where A is a variable and a is a terminal

Further, G has no useless symbols.

Putting CFG in CNF

- **9** Start with a grammar without useless symbols, ϵ -productions, and unit productions.
- 2 Each production of the grammar is either of the form $A \to a$, which is already in a form allowed by CNF, or it has a body of length 2 or more. Do the following:
 - Arrange that all bodies of length 2 or more consist only of variables. To do so, if terminal a appears in a body of length 2 or more, replace it by a new variable, say A and add $A \rightarrow a$.
 - **9** Break bodies of length 3 or more into a cascade of productions, each with a body consisting of two variables. To do so, we break production $A \to B_1 B_2 \dots B_k$ into a set of productions

$$A o B_1 C_1, \ C_1 o B_2 C_2, \ \dots, \ C_{k-3} o B_{k-2} C_{k-2}, \ C_{k-2} o B_{k-1} B_k$$

Summary

- Every CFG can be transformed into a CFG in CNF
- To do so,
 - **1** Apply ϵ -production, unit production, useless symbols eliminations
 - 2 Arrange and break remaining productions.