COSE215: Theory of Computation Lecture 13 — Pushdown Automata (2)

Hakjoo Oh 2017 Spring

Exercises

- $L = \{w \in \{a, b\}^* \mid n_a(w) = n_b(w)\}$
 - Intuition: Whenever we read a, we insert a counter symbol 0 onto the stack, and pop one counter symbol from the stack whenever b is found. For example,

$$(abab,Z_0)
ightarrow (bab,0Z_0)
ightarrow (ab,Z_0)
ightarrow (b,0Z_0)
ightarrow (\epsilon,Z_0)$$

For the cases where a prefix of the input string contains more b's than a's, use a negative counter symbol, say 1, for counting the b's that should be matched against a's later. For example,

 $(bbaa, Z_0) \rightarrow (baa, 1Z_0) \rightarrow (aa, 11Z_0) \rightarrow (a, 1Z_0) \rightarrow (\epsilon, Z_0)$ \blacktriangleright The pushdown automaton:

$$P = (\{q_0, q_1\}, \{a, b\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_1\})$$

$$a, Z_0/0Z_0$$

$$a, 0/00$$

$$b, 0/\epsilon$$

$$b, Z_0/1Z_0$$

$$b, 1/11$$

$$a, 1/\epsilon$$
start $\rightarrow q_0 \xrightarrow{\epsilon, Z_0/Z_0} q_1$

COSE215 2017 Spring, Lecture 13

• $L = \{a^i b^j c^k \mid i,j,k \geq 0 \land (i=j \lor i=k)\}$

Think of the two cases separately:
1 L₁ = {aⁱb^jc^k | i, j, k ≥ 0 ∧ i = j}.
2 L₂ = {aⁱb^jc^k | i, j, k ≥ 0 ∧ j = k}.

 $P = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{a, b, c\}, \{0, 1\}, \delta, q_0, 0, \{q_4, q_6\})$

Configurations of PDA

- A configuration of a PDA consists of the automaton state and the stack contents.
- The configuration or instantaneous description (ID) is represented by (q,w,γ) , where
 - q is the state,
 - w is the remaining input, and
 - γ is the stack contents.
- Suppose $(q, aw, X\beta)$ is a configuration and $(p, \alpha) \in \delta(q, a, X)$. Then, the configuration moves in one step to $(p, w, \alpha\beta)$:

$$(q, aw, Xeta) \vdash (p, w, lphaeta)$$

The Language of Pushdown Automata

Definition (Acceptance by Final State)

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA. Then L(P), the language of P by final state, is

$$L(P) = \{w \in \Sigma^* \mid (q_0, w, Z_0) \vdash^* (q, \epsilon, \alpha)\}$$

for some state $q \in F$ and any stack string α .

The PDA contains 1111, because $(q_0, 1111, Z_0) \vdash^* (q_2, \epsilon, Z_0)$.

Another Way of Defining The Language of a PDA

Definition (Acceptance by Empty Stack)

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA. Then N(P), the language of P accepted by empty stack, is

$$N(P) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \vdash^* (q, \epsilon, \epsilon) \}$$

for any q.

When accepting by empty stack, we omit the F component:

 $(Q, \Sigma, \Gamma, \delta, q_0, Z_0)$

L(P) =
N(P) =

L(P) =
N(P) =

Equivalence

Theorem (Equivalence of Final State and Empty Stack)

For any language L, there exists a PDA P_F such that $L = L(P_F)$ iff there exists a PDA P_N such that $L = N(P_N)$.

Lemma (From Empty Stack to Final State)

For any PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, there is a PDA P_F such that $N(P_N) = L(P_F)$.

Lemma (From Final State to Empty Stack) For any PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$, there is a PDA P_N such that $N(P_N) = L(P_F)$. From Empty Stack to Final State

Given $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, define

 $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$

where

$$\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$$

- ② For all $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $Y \in \Gamma$, $\delta_F(q, a, Y)$ contains $\delta_N(q, a, Y)$.
- $\hbox{ or all } q \in Q \text{, } \delta_F(q,\epsilon,X_0) \text{ contains } (p_f,\epsilon).$

Then, w is in $L(P_F)$ if and only if w is in $N(P_N)$.

Convert the following PDA to a PDA that accepts that same language by empty stack:

From Final State to Empty Stack

Given $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$, define

$$P_N=(Q\cup\{p_0,p\},\Sigma,\Gamma\cup\{X_0\},\delta_N,p_0,X_0)$$

where

•
$$\delta_N(p_0,\epsilon,X_0) = \{(q_0,Z_0X_0)\}$$

- ② For all $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $Y \in \Gamma$, $\delta_N(q, a, Y)$ includes $\delta_F(q, a, Y)$.
- For all accepting states $q \in F$ and $Y \in \Gamma \cup \{X_0\}$, $\delta_N(q, \epsilon, Y)$ includes (p, ϵ) .
- For all stack symbols $Y \in \Gamma \cup \{X_0\}$, $\delta_N(p,\epsilon,Y) = \{(p,\epsilon)\}$.

Equivalence of PDA's and CFG's

The following three classes of languages:

- The context-free languages, i.e., the languages defined by CFG's.
- ② The languages that are accepted by final state by some PDA.
- The languages that are accepted by empty stack by some PDA. are all the same class.

From CFG to PDA

Given a CFG G = (V, T, P, S), define a PDA P (by empty stack):

$$P = (\{q\}, T, V \cup T, \delta, q, S)$$

where

• For each variable
$$A \in V$$
,

$$\delta(q,\epsilon,A) = \{(q,\beta) \mid (A \to \beta) \text{ is in } G\}$$

• For each terminal $a \in T$,

$$\delta(q,a,a) = \{(q,\epsilon)\}$$

$G = (\{B\}, \{(,)\}, P, B)$ $B \to BB \mid (B) \mid \epsilon$

Deterministic Pushdown Automata

Definition

A pushdown automata $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a *deterministic* pushdown automata (DPDA) if P makes at most one move at a time, i.e.,

$${f 0} \; |\delta(q,a,X)| \leq 1$$
 for any $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma.$

 $\textbf{ if } \delta(q,a,X) \neq \emptyset \text{ for some } a \in \Sigma \text{, then } \delta(q,\epsilon,X) = \emptyset.$

Definition

A language L is said to be a deterministic context-free language iff there exists a DPDA P such that L = L(P).

The language

$$L = \{a^n b^n \mid n \ge 0\}$$

is a deterministic context-free language.

Fact1: DCFLs includes some CFLs

The language

$$L=\{ww^R\mid w\in\{a,b\}^*\}$$

is *not* a deterministic context-free language.

Fact2: DCFLs do not include some CFLs

Regular Languages and DCFLs

Fact3: DCFLs include all RLs

Theorem

If L is a regular language, then L = L(P) for some DPDA P.

Proof.

Let
$$A=(Q,\Sigma,\delta_A,q_0,F)$$
 be a DFA. Construct DPDA

$$P=(Q,\Sigma,\{Z_0\},\delta_p,q_0,Z_0,F)$$

where define $\delta_p(q, a, Z_0) = \{(p, Z_0)\}$ for all p and q such that $\delta_A(q, a) = p$. Then, $(q_0, w, Z_0) \vdash^* (p, \epsilon, Z_0)$ iff $\delta_A^*(q_0, w) = p$.

DPDA's and Ambiguous Grammars

Fact4: All DCFLs have unambiguous grammars.

Theorem

If L = L(P) for some DPDA P, then L has an unambiguous grammar.

Fact5: DCFLs do not include all unambiguous CFLs.

The language

$$L=\{ww^R\mid w\in\{a,b\}^*\}$$

has an unambiguous grammar

$$S \rightarrow aSa \mid bSb \mid \epsilon$$

but not a DPDA language.

Summary

- PDA = FA with a stack
- PDA is more powerful than FA. Cover all CFLs.
 - Still limited, e.g., $\{ww \mid w \in \Sigma^*\}$.
- DPDA is between FA and PDA

In general,

- FA with an external storage
 - queue, two stacks, random access memory, ...?
 - increase the language-recognizing power?