COSE215: Theory of Computation

Lecture 8 - Context-Free Grammars

Hakjoo Oh
2016 Spring

Context-Free Languages

An extension of the regular langauges. Many applications in CS:

- Most programming languages (e.g., C, Java, ML, etc).
- Markup languages (e.g., HTML, XML, etc).
- Essential to design of programming languages and construction of compilers.

Example: Palindromes

- A string is a palindrome if it reads the same forward and backward.
- $L=\left\{w \in\{0,1\}^{*} \mid w=w^{R}\right\}$
- L is not regular, but context-free.
- Every context-free language is defined by a recursive definition.
- Basis: $\boldsymbol{\epsilon}, \mathbf{0}$, and $\mathbf{1}$ are palindromes.
- Induction: If w is a palindrome, so are $\mathbf{0 w 0}$ and $\mathbf{1 w 1}$.
- The recursive definition is expressed by a context-free grammar.

$$
\begin{aligned}
& P \rightarrow \epsilon \\
& P \rightarrow 0 \\
& P \rightarrow 1 \\
& P \rightarrow 0 P 0 \\
& P \rightarrow 1 P 1
\end{aligned}
$$

Context-Free Grammars

Definition (Context-Free Grammars)

A context-free grammar \boldsymbol{G} is defined as a quadruple:

$$
G=(V, T, S, P)
$$

- V: a finite set of variables (nonterminals)
- T : a finite set of symbols (terminals or terminal symbols)
- $\boldsymbol{S} \in \boldsymbol{V}$: the start variable
- P: a finite set of productions. A production has the form

$$
x \rightarrow y
$$

where $\boldsymbol{x} \in \boldsymbol{V}$ and $\boldsymbol{y} \in(\boldsymbol{V} \cup \boldsymbol{T})^{*}$.

Example: Palindromes

$$
G=(\{P\},\{0,1\}, P, A)
$$

where A is the set of five productions:

$$
\begin{aligned}
& P \rightarrow \epsilon \\
& P \rightarrow 0 \\
& P \rightarrow 1 \\
& P \rightarrow 0 P 0 \\
& P \rightarrow 1 P 1
\end{aligned}
$$

Example: Simple Arithmetic Expressions

$$
G=(\{E, I\},\{+, *,(,), a, b, 0,1\}, E, P)
$$

where \boldsymbol{P} is a set of productions:

$$
\begin{aligned}
& E \rightarrow I \\
& E \rightarrow E+E \\
& E \rightarrow E * E \\
& E \rightarrow(E) \\
& I \rightarrow a \\
& I \rightarrow b \\
& I \rightarrow I a \\
& I \rightarrow I b \\
& I \rightarrow I 0 \\
& I
\end{aligned} \rightarrow I 0
$$

Derivation

Definition (Derivation Relation, \Rightarrow)

Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{T}, \boldsymbol{S}, \boldsymbol{P})$ be a context-free grammar. Let $\boldsymbol{\alpha} \boldsymbol{A} \boldsymbol{\beta}$ be a string of terminals and variables, where $\boldsymbol{A} \in \boldsymbol{V}$ and $\boldsymbol{\alpha}, \boldsymbol{\beta} \in(\boldsymbol{V} \cup \boldsymbol{T})^{*}$. Let $\boldsymbol{A} \rightarrow \boldsymbol{\gamma}$ is a production in \boldsymbol{G}. Then, we say $\boldsymbol{\alpha} \boldsymbol{A} \boldsymbol{\beta}$ derives $\boldsymbol{\alpha} \boldsymbol{\gamma} \boldsymbol{\beta}$, and write

$$
\alpha A \beta \Rightarrow \alpha \gamma \beta
$$

Definition $\left(\Rightarrow^{*}\right.$, Closure of $\left.\Rightarrow\right)$

\Rightarrow^{*} is a relation that represents zero, or more steps of derivations:

- Basis: For any string $\boldsymbol{\alpha}$ of terminals and variables, $\boldsymbol{\alpha} \Rightarrow^{*} \boldsymbol{\alpha}$.
- Induction: If $\alpha \Rightarrow^{*} \beta$ and $\beta \Rightarrow \gamma$, then $\alpha \Rightarrow^{*} \gamma$.

Example

A derivation for $a *(a+b 00)$:

$$
\begin{aligned}
& E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a *(E) \Rightarrow \\
& a *(E+E) \Rightarrow a *(I+E) \Rightarrow a *(a+E) \Rightarrow a *(a+I) \Rightarrow \\
& a *(a+I 0) \Rightarrow a *(a+I 00) \Rightarrow a *(a+b 00)
\end{aligned}
$$

Thus, $\boldsymbol{E} \Rightarrow^{*} \boldsymbol{a} *(\boldsymbol{a}+\boldsymbol{b 0 0})$.

Leftmost and Rightmost Derivations

- Leftmost derivation: replace the leftmost variable at each derivation step
- Rightmost derivation: replace the rightmost variable at each derivation step
The right most derivation for $a *(a+b 00)$:

$$
\begin{aligned}
& E \Rightarrow E * E \Rightarrow E *(E) \Rightarrow E *(E+E) \Rightarrow E *(E+I) \Rightarrow \\
& E *(E+I 0) \Rightarrow E *(E+I 00) \Rightarrow E *(E+b 00) \Rightarrow E *(I+b 00) \Rightarrow \\
& E *(a+b 00) \Rightarrow I *(a+b 00) \Rightarrow a *(a+b 00)
\end{aligned}
$$

Language of a Grammar

Definition

Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{T}, \boldsymbol{S}, \boldsymbol{P})$ be a context-free grammar. The language of \boldsymbol{G}, denoted $L(G)$, is the set of terminal strings that have derivations from the start symbol. That is,

$$
L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}
$$

Definition (Context-free Language)

If a language \boldsymbol{L} is the language of some context-free grammar \boldsymbol{G}, i.e., $L=L(G)$, then we say L is a context-free language, shortly CFL.

Sentential Forms

Definition (Sentential Forms)

If $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{T}, \boldsymbol{S}, \boldsymbol{P})$ is a context-free grammar, then any string $\alpha \in(\boldsymbol{V} \cup \boldsymbol{T})^{*}$ such that $\boldsymbol{S} \Rightarrow^{*} \boldsymbol{\alpha}$ is a sentential form.

- If $\boldsymbol{S} \Rightarrow^{*} \boldsymbol{\alpha}$ is a leftmost derivation, $\boldsymbol{\alpha}$ is a left-sentential form.
- If $\boldsymbol{S} \Rightarrow^{*} \boldsymbol{\alpha}$ is a rightmost derivation, $\boldsymbol{\alpha}$ is a right-sentential form.

Example

- Leftmost:

$$
\begin{aligned}
& E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a *(E) \\
& a *(E+E) \Rightarrow a *(I+E) \Rightarrow a *(a+E) \Rightarrow a *(a+I) \Rightarrow \\
& a *(a+I 0) \Rightarrow a *(a+I 00) \Rightarrow a *(a+b 00)
\end{aligned}
$$

- Neither leftmost nor rightmost:

$$
E \Rightarrow E * E \Rightarrow E *(E) \Rightarrow E *(E+E) \Rightarrow E *(I+E)
$$

Exercises

- $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$

Exercises

- $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$
- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Exercises

- $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$
- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- $L=\left\{a^{n} b^{m} \mid n \neq m\right\}$

Exercises

- $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$
- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- $L=\left\{a^{n} b^{m} \mid n \neq m\right\}$
- The language of balanced parentheses.
- E.g., ϵ, (), ()(), (()), (()())

