COSE215: Theory of Computation

Lecture 6 - Properties of Regular Languages (1)

Hakjoo Oh
2016 Spring

Properties of Regular Languages

- Closure properties
- "Pumping Lemma" for regular languages

Closure Properties

If one (or several) languages are regular, then certain related languages are also regualr. E.g.,

- Given regular languages \boldsymbol{L}_{1} and $\boldsymbol{L}_{2}, \boldsymbol{L}_{1} \cup \boldsymbol{L}_{2}$ is also regular.
- Given regular languages \boldsymbol{L}_{1} and $\boldsymbol{L}_{2}, \boldsymbol{L}_{1} \cap \boldsymbol{L}_{2}$ is also regular.

The family of regular languages is closed under union and intersection.

Closure Properties

Regular languages are closed under:

- union
- difference
- complementation
- intersection
- reversal
- homomorphism

Closure under Union

Theorem
If \boldsymbol{L} and \boldsymbol{M} are regular languages, then so is $\boldsymbol{L} \cup \boldsymbol{M}$.

Closure under Difference

Theorem
If L and M are regular languages, then so is $L-M$.

Closure under Complementation

Theorem

If \boldsymbol{L} is a regular language over alphabet $\boldsymbol{\Sigma}$, then $\overline{\boldsymbol{L}}=\boldsymbol{\Sigma}^{*}-\boldsymbol{L}$ is also a regular language.

Let \boldsymbol{A} be a DFA that accepts \boldsymbol{L}, i.e., $\boldsymbol{L}=\boldsymbol{L}(\boldsymbol{A})$ for DFA $\boldsymbol{A}=\left(\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, q_{0}, \boldsymbol{F}\right)$. Define a DFA \boldsymbol{B} as follows:

$$
B=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)
$$

Closure under Intersection

Theorem
If \boldsymbol{L} and \boldsymbol{M} are regular languages, then so is $\boldsymbol{L} \cap \boldsymbol{M}$.

- Non-constructive proof: $L \cap M=\overline{\bar{L} \cup \bar{M}}$
- Constructive proof: construct an automaton that accepts $L \cap M$.

Closure under Intersection

Theorem

If L and M are regular languages, then so is $L \cap M$.

- Non-constructive proof: $L \cap M=\overline{\bar{L} \cup \bar{M}}$
- Constructive proof: construct an automaton that accepts $L \cap M$.
(Constructive proof) Let $\boldsymbol{A}_{\mathbf{1}}=\left(\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}_{1}, \boldsymbol{q}_{0}, \boldsymbol{F}_{1}\right)$ and $A_{2}=\left(P, \Sigma, \delta_{2}, p_{0}, F_{2}\right)$ be DFAs for L and M, respectively. Define the automaton \boldsymbol{A} :

$$
A=\left(Q \times P, \Sigma, \delta,\left(q_{0}, p_{0}\right), F_{1} \times F_{2}\right)
$$

where $\delta((q, p), a)=\left(\delta_{1}(q, a), \delta_{2}(p, a)\right)$. Then, $L(A)=L\left(A_{1}\right) \cap L\left(A_{2}\right)$.

Closure under Reversal

Theorem

If \boldsymbol{L} is a regular language, then so is \boldsymbol{L}^{R}.
Let \boldsymbol{A} be a $\boldsymbol{\epsilon}$-NFA that accepts \boldsymbol{L}, then we can construct an automaton that accepts L^{R} as follows:
(1) Reverse all the arcs in the transition graph for \boldsymbol{A}.
(2) Make the start state of \boldsymbol{A} be the only accepting state for the new automaton.
(0) Create a new start state p_{0} with transitions on ϵ to all the accepting states of \boldsymbol{A}.

Closure under Homomorphism

Definition (Homomorphism)

Suppose $\boldsymbol{\Sigma}$ and $\boldsymbol{\Gamma}$ are alphabets. Then a function

$$
h: \Sigma \rightarrow \Gamma^{*}
$$

is called a homomorphism. For a given string $w=a_{1} a_{2} \cdots a_{n}$,

$$
h(w)=h\left(a_{1}\right) h\left(a_{2}\right) \cdots h\left(a_{n}\right)
$$

For a language \boldsymbol{L},

$$
h(L)=\{h(w) \mid w \in L\}
$$

Theorem
If \boldsymbol{L} is a regular language over $\boldsymbol{\Sigma}$ and \boldsymbol{h} is a homomorphism on $\boldsymbol{\Sigma}$, then $\boldsymbol{h}(\boldsymbol{L})$ is also regular.

Memo

Memo

