COSE215: Theory of Computation Lecture 5 — Regular Expressions and Finite Automata

> Hakjoo Oh 2016 Spring

Equivalence between Regular Expressions and Finite Automata

Theorem (From RE to FA)

Every language defined by a regular expression is also defined by a finite automaton.

Theorem (From FA to RE)

Every language defined by some finite automata is also defined by a regular expression.

Conversion From Regular Expression to Finite Automata

Given a regular expression R, we show that L(R) is accepted by an ϵ -NFA such that

- it has exactly one accepting state,
- no arcs into the initial state, and
- no arcs out of the accepting state.

Conversion from Regular Expression to Finite Automata

The proof is by structural induction on \boldsymbol{R} . Base cases:

- $R = \epsilon$:
- $R = \emptyset$:
- $R = a (\in \Sigma)$:

From Regular Expression to Finite Automata

Inductive cases:

- $R = R_1 + R_2$:
- $R = R_1 R_2$:
- $R = R_1^*$:

Examples

- 0 · 1*:
- $(0+1) \cdot 0 \cdot 1$:
- $(0+1)^* \cdot 1 \cdot (0+1)$:

Memo

Memo