COSE215: Theory of Computation

Lecture 4 - Regular Expressions

Hakjoo Oh
2016 Spring

Regular expression

A regular expression denotes a language.
E.g., $(\boldsymbol{a}+(\boldsymbol{b} \cdot \boldsymbol{c}))^{*}$ stands for:
$\{\epsilon, a, b c, a a, a b c, b c a, b c b c, a a a, a a b c, \ldots\}$

Syntax

Definition (Syntax of regular expressions)

Regular expressions over alphabet $\boldsymbol{\Sigma}$ are constructed recursively:
(1) (Basis) $\emptyset, \boldsymbol{\epsilon}$, and $\boldsymbol{a} \in \boldsymbol{\Sigma}$ are regular expressions.
(2) (Induction)

If \boldsymbol{R}_{1} and $\boldsymbol{R}_{\mathbf{2}}$ are regular expressions, so are $\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}$ and $\boldsymbol{R}_{\mathbf{1}} \cdot \boldsymbol{R}_{\mathbf{2}}$. If \boldsymbol{R} is a regular expression, so are \boldsymbol{R}^{*} and (\boldsymbol{R}).

$$
\begin{array}{l:l}
R \rightarrow & \emptyset \\
: & \epsilon \\
: & a \in \Sigma \\
: & R_{1}+R_{2} \\
: & R_{1} \cdot R_{2} \\
: & R^{*} \\
: & (R)
\end{array}
$$

Semantics

Definition (Semantics of regular expressions)

A regular expression R means a set of strings, denoted $L(R)$, which is defined inductively:

$$
\begin{aligned}
L(\emptyset) & =\emptyset \\
L(\epsilon) & =\{\epsilon\} \\
L(a) & =\{a\} \\
L\left(R_{1}+R_{2}\right) & =L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
L\left(R_{1} \cdot R_{2}\right) & =L\left(R_{1}\right) L\left(R_{2}\right) \\
L\left(R^{*}\right) & =(L(R))^{*} \\
L((R)) & =L(R)
\end{aligned}
$$

Example

$$
L\left(a^{*} \cdot(a+b)\right)=
$$

Exercises

Find the languages of the regular expressions and equivalent finite automata.

- $(a+b)^{*}$
- $(a+b)^{*}(a+b)$
- $(a \cdot a)^{*}(b \cdot b)^{*} b$

Exercises

Find regular expressions for the languages:

- $L=\left\{\boldsymbol{w} \in\{0,1\}^{*} \mid 0\right.$ and 1 alternate in $\left.\boldsymbol{w}\right\}$
- $L=\left\{w \in\{0,1\}^{*} \mid \boldsymbol{w}\right.$ has at least one pair of consecutive zeros $\}$
- $L=\left\{a^{n} b^{m} \mid n \geq 3, m\right.$ is even $\}$
- $L=\left\{a^{n} b^{m} \mid(n+m)\right.$ is even $\}$
- $L=\left\{a^{n} b^{m} \mid n \geq 4, m \leq 3\right\}$

Memo

Memo

