
Undecidability (2)

Hakjoo Oh
2016 Spring

COSE 215: Theory of Computation

Contents
• “Real” Examples of undecidable problems

• Halting problem

• Program verification

• Properties of CFGs

• Post Correspondence Problem (PCP)

• How to deal with undecidable problems?

Halting Problem

• https://www.youtube.com/watch?v=92WHN-pAFCs

https://www.youtube.com/watch?v=92WHN-pAFCs

Program Verification

Program Verification

67

9.3 Undecidable Problems in Practice

“Real” undecidable problems:

1. Halting Problem: See the video https://www.youtube.com/watch?v=92WHN-pAFCs.
2. Program Verification

3. Properties of CFG:
– Is a given CFG ambiguous?
– For CFGs G1 and G2, is L(G1) \ L(G2) = ;?
– Is L(G1) = L(G2)?
– Is L(G1) = L(R) for some regular expression R?
– Is L(G1) = T

⇤ for some alphabet T?
4. Post Correspondence Problem. Surprisingly, this simple problem cannot be solved by comput-

ers!
We can describe this problem as a type of puzzle. We begin with a collection of dominos, each
containing two strings, one on each side. An individual domino looks like

⇥
a

ab

⇤

and a collection of dominos looks like

{
⇥
b

ca

⇤
,

⇥
a

ab

⇤
,

⇥
ca

a

⇤
,

⇥
abc

c

⇤
}

The task is to make a list of dominos (repetitions permitted) so that the string we get by
reading o↵ the symbols on the top is the same as the string of symbols on the bottom. This
list is called a match. For example, the following list is a match for this puzzle.

⇥
a

ab

⇤⇥
b

ca

⇤⇥
ca

a

⇤⇥
a

ab

⇤⇥
abc

c

⇤

Reading o↵ the top string we get abcaaabc, which is the same as reading o↵ the bottom.
For some collection of dominos, finding a match may not be possible. For example, the collec-
tion

{
⇥
abc

ab

⇤
,

⇥
ca

a

⇤
,

⇥
acc

ba

⇤
}

cannot contain a match because every top string is longer than the corresponding bottom
string.
The Post Correspondence Problem is to determine whether a collection of dominos has a
match. This problem is unsolvable by algorithms.

Properties of CFGs

67

9.3 Undecidable Problems in Practice

“Real” undecidable problems:

1. Halting Problem: See the video https://www.youtube.com/watch?v=92WHN-pAFCs.
2. Program Verification

3. Properties of CFG:
– Is a given CFG ambiguous?
– For CFGs G1 and G2, is L(G1) \ L(G2) = ;?
– Is L(G1) = L(G2)?
– Is L(G1) = L(R) for some regular expression R?
– Is L(G1) = T

⇤ for some alphabet T?
4. Post Correspondence Problem. Surprisingly, this simple problem cannot be solved by comput-

ers!
We can describe this problem as a type of puzzle. We begin with a collection of dominos, each
containing two strings, one on each side. An individual domino looks like

⇥
a

ab

⇤

and a collection of dominos looks like

{
⇥
b

ca

⇤
,

⇥
a

ab

⇤
,

⇥
ca

a

⇤
,

⇥
abc

c

⇤
}

The task is to make a list of dominos (repetitions permitted) so that the string we get by
reading o↵ the symbols on the top is the same as the string of symbols on the bottom. This
list is called a match. For example, the following list is a match for this puzzle.

⇥
a

ab

⇤⇥
b

ca

⇤⇥
ca

a

⇤⇥
a

ab

⇤⇥
abc

c

⇤

Reading o↵ the top string we get abcaaabc, which is the same as reading o↵ the bottom.
For some collection of dominos, finding a match may not be possible. For example, the collec-
tion

{
⇥
abc

ab

⇤
,

⇥
ca

a

⇤
,

⇥
acc

ba

⇤
}

cannot contain a match because every top string is longer than the corresponding bottom
string.
The Post Correspondence Problem is to determine whether a collection of dominos has a
match. This problem is unsolvable by algorithms.

Post Correspondence Problem

• Is there a list of dominos (repetitions permitted) such
that reading off top yields the string obtained by reading
off bottom?

• Possible:  

• Impossible:

67

9.3 Undecidable Problems in Practice

“Real” undecidable problems:

1. Halting Problem: See the video https://www.youtube.com/watch?v=92WHN-pAFCs.
2. Program Verification

3. Properties of CFG:
– Is a given CFG ambiguous?
– For CFGs G1 and G2, is L(G1) \ L(G2) = ;?
– Is L(G1) = L(G2)?
– Is L(G1) = L(R) for some regular expression R?
– Is L(G1) = T

⇤ for some alphabet T?
4. Post Correspondence Problem. Surprisingly, this simple problem cannot be solved by comput-

ers!
We can describe this problem as a type of puzzle. We begin with a collection of dominos, each
containing two strings, one on each side. An individual domino looks like

⇥
a

ab

⇤

and a collection of dominos looks like

{
⇥
b

ca

⇤
,

⇥
a

ab

⇤
,

⇥
ca

a

⇤
,

⇥
abc

c

⇤
}

The task is to make a list of dominos (repetitions permitted) so that the string we get by
reading o↵ the symbols on the top is the same as the string of symbols on the bottom. This
list is called a match. For example, the following list is a match for this puzzle.

⇥
a

ab

⇤⇥
b

ca

⇤⇥
ca

a

⇤⇥
a

ab

⇤⇥
abc

c

⇤

Reading o↵ the top string we get abcaaabc, which is the same as reading o↵ the bottom.
For some collection of dominos, finding a match may not be possible. For example, the collec-
tion

{
⇥
abc

ab

⇤
,

⇥
ca

a

⇤
,

⇥
acc

ba

⇤
}

cannot contain a match because every top string is longer than the corresponding bottom
string.
The Post Correspondence Problem is to determine whether a collection of dominos has a
match. This problem is unsolvable by algorithms.

67

9.3 Undecidable Problems in Practice

“Real” undecidable problems:

1. Halting Problem: See the video https://www.youtube.com/watch?v=92WHN-pAFCs.
2. Program Verification

3. Properties of CFG:
– Is a given CFG ambiguous?
– For CFGs G1 and G2, is L(G1) \ L(G2) = ;?
– Is L(G1) = L(G2)?
– Is L(G1) = L(R) for some regular expression R?
– Is L(G1) = T

⇤ for some alphabet T?
4. Post Correspondence Problem. Surprisingly, this simple problem cannot be solved by comput-

ers!
We can describe this problem as a type of puzzle. We begin with a collection of dominos, each
containing two strings, one on each side. An individual domino looks like

⇥
a

ab

⇤

and a collection of dominos looks like

{
⇥
b

ca

⇤
,

⇥
a

ab

⇤
,

⇥
ca

a

⇤
,

⇥
abc

c

⇤
}

The task is to make a list of dominos (repetitions permitted) so that the string we get by
reading o↵ the symbols on the top is the same as the string of symbols on the bottom. This
list is called a match. For example, the following list is a match for this puzzle.

⇥
a

ab

⇤⇥
b

ca

⇤⇥
ca

a

⇤⇥
a

ab

⇤⇥
abc

c

⇤

Reading o↵ the top string we get abcaaabc, which is the same as reading o↵ the bottom.
For some collection of dominos, finding a match may not be possible. For example, the collec-
tion

{
⇥
abc

ab

⇤
,

⇥
ca

a

⇤
,

⇥
acc

ba

⇤
}

cannot contain a match because every top string is longer than the corresponding bottom
string.
The Post Correspondence Problem is to determine whether a collection of dominos has a
match. This problem is unsolvable by algorithms.

Programming Technologies

• Program Analysis 

• Program Synthesis

Current Technology for Safe SW

Manual, ad-hoc, postmortem:

code review, testing, simulation, debugging, etc

 27 int i;
 28 for (i = 0; i <= 12; i++) txtbuf[i] = 0;
 29
 30 junk = (char *)malloc(sizeof(char) * BUFLEN);
 31 binbuf = (char *)malloc(sizeof(char));
 32
 33 if ((junk != NULL) && (binbuf != NULL)) {
 34 isc_buffer_init(binbuf, junk, BUFLEN);
 35 dns_name_init(dns_name, NULL);
 36 dns_name_setbuffer(dns_name, binbuf);
 37 result = dns_name_fromtext(dns_name, txtbuf, NULL, 0, NULL);
 38 free(junk);
 39 free(binbuf);

Program Analysis Technology

Technology for “Software MRI”

What is Program Analysis?

Very broad topic, but generally speaking, automated analysis
of program behavior

Program analysis is about developing algorithms and tools
that can analyze other programs

prog.c

2 / 24

What is Program Analysis?

Very broad topic, but generally speaking, automated analysis
of program behavior

Program analysis is about developing algorithms and tools
that can analyze other programs

prog.c

2 / 24

• Aims to detect memory errors in C programs

• e.g., buffer-overrun, memory leak, null-dereference, etc

• Features (vs. testing)

• Full automation

• Find bugs early

• All bugs found

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

11

 16 static char *curfinal = "HDACB FE";
 17
 18 keysym = read_from_input ();
 19
 20 if ((((KeySym)(keysym) >= 0xFF91) && ((KeySym)(keysym) <= 0xFF94)))
 21 {
 22 unparseputc((char)(keysym-0xFF91 +'P'), pty);
 23 key = 1;
 24 }
 25 else if (keysym >= 0)
 26 {
 27 if (keysym < 16)
 28 {
 29 if (read_from_input())
 30 {
 31 if (keysym >= 10) return;
 32 curfinal[keysym] = 1;
 33 }
 34 else
 35 {
 36 curfinal[keysym] = 2;
 37 }
 38 }
 39 if (keysym < 10)
 40 {
 41 unparseputc(curfinal[keysym], pty);
 42 }
 43 } excerpt from hanterm-3.1.6

curfinal: buffer of size 10

keysym: any integer

keysym: [0,15]

curfinal:[10,10]
keysym: [10,15]

safe

safe

buffer-overrun

Sparrow automatically
pinpoints the buffer-overrun bug

12

Static Program Analysis

• Predict SW behavior statically and automatically

• static: before execution, before sell / embed

• automatic: sw is analyzed by sw (“static analyzers”)

• Applications

• bug-finding. e.g., find runtime failures of programs

• security. e.g., is this app malicious or benign?

• verification. e.g., does the program meet its specification?

• compiler optimization, e.g., automatic parallelization

13

14

How Program Analysis Works

error
states

sound

program
states

program
states

error
states

vs.

unsound

15

error
states

How Program Analysis Works

error
states

vs.

false alarms

program
states

program
states

imprecise precise

16

Program Synthesis Technology

• Currently, programs are written solely by programmers

• programming is often repetitive, tedious, and error-
prone

• end-users are not capable of fully leveraging
computational devices

• In the future, most programs will be written by programs

Program Synthesis Technology

Program Synthesizer
user
intent

program

ex) Regular Expressions

(from stackoverflow.com)

Synthesizing Regular Expressions

4

000
111

000000
010101
…

((0 + 1)(0 + 1)(0 + 1))*
0

00
1111
0101
…

∈ 0, 1 3

Synthesizing Regular Expressions

8

∈ ∅

⊆
⊆

9

0+1 0+(□+□) 0+(□ · □)

0 1 □+□ □ · □ □*

0+□ 1+□ (□+□)+□ (□ · □)+□ (□*)+□ …

…

Performance

11

3 ((0 + 1)(0 + 1)(0 + 1))* 0.007

1 0 (1 (0 + 1)* 0)* 0.012

01 (0 + 1(0 + 1))* 0.028

01 ((0 + 1)* 01)* 0.048

0 (1 + 01*0)* 0.075

3
0 (0 + 1)(0 + 1)0(0 + 1)* 0.125

1 1((0 + 1) + (0 + 1)1)* 0.410

n ≥ 3 m 00*00(11)* 0.545

0101 (0 + 1)* 0101 (0 + 1)* 1.273

∈ 0, 1 0 1

FlashFill in Microsoft Excel

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 93

review articles

behaviors. Example-based reasoning
techniques developed in the inductive
synthesis community can help auto-
mate several repetitive and structured
tasks in education including problem
generation, solution generation, and
feedback generation.10 These tasks
can be automated for a wide variety
of STEM subject domains including
logic, automata theory, programming,
arithmetic, algebra, and geometry. For
instance, Figure 3 shows the output of
an inductive synthesis technique for
generating algebraic proof problems
similar to a given example problem.

Future opportunities. We have de-
scribed important real-world applica-
tions of IP. We believe there are many
other domains to which IP can and
will be applied in the near future. Any
domain in which a set of high-level
abstractions already exists is a strong
candidate for IP. For example, the If
This Then That (IFTTT) service (http://
ifttt.com/), which allows end users to
express small rule-based programs us-
ing triggers and actions, is an excellent
candidate for application of IP. IFTTT
programs connect triggers (such as
I was tagged in a photo) with actions
(such as send an email message) over
specific channels such as Facebook. In
such a domain, IP can be used to learn
programs from examples of a user do-
ing the task. For instance, it can learn
a program to send a text message every
time a smartphone user leaves work
for home. Looking further ahead, au-
tomatically building robot strategies
from user provided examples30 is a
promising new direction for IP.

As the frameworks to build IP-based
solutions mature, including meta-syn-
thesis frameworks that simplify the
process of building synthesizers (as we
will discuss later), it will become easier
for developers to create new IP-empow-
ered applications.

IP vs. Machine Learning
IP is concerned about making ma-
chines learn programs automatically
and can hence be considered another
machine learning paradigm. So, what
is distinctive about inductive program-
ming? Table 1 outlines a series of differ-
ences, some of which we discuss here.

We will also use a running example
to indicate some of the features about
IP. Figure 4 shows an illustrative ap-

Figure 2. Flash Fill.9

An Excel 2013 feature that automates repetitive string transformations using
examples. Once the user performs one instance of the desired transformation
(row 2, col. B) and proceeds to transforming another instance (row 3, col. B),
Flash Fill learns a program Concatenate(ToLower(Substring(v,WordToken,1)),
" ", ToLower(SubString(v,WordToken,2))), which extracts the first two
words in input string v (col. A), converts them to lowercase, and concatenates them
separated by a space character, to automate the repetitive task.

Figure 3. Problem generation for algebraic proof problems involving identities over
analytic functions.

Example Problem
!

sin A
1+cos A

1+cos A
sinA

= 2 cscA+

Generalized
Problem Template
!

T1 A
1±T2 A

1±T3 A
T4 A

= 2 T5 A+

where Ti ∈ {cos, sin, tan, cot, sec, csc}
New Similar
Problems

cos A
1−sin A

1−sin A
cos A

= 2 tan A+

cos A
1+sin A

1+sin A
cos A

= 2 sec A+

cot A
1+csc A

1+csc A
cot A

= 2 sec A+

tan A
1+sec A

1+sec A
tan A

= 2 csc A+

sin A
1−cos A

1−cos A
sin A

= 2 cot A+

A given problem is generalized into a template and valid instantiations are found by testing on
random values for free variables.

Synthesizing Programs

rithm is unlikely to return a program that does an n-way case split
on its input and returns bi whenever the input is equal to ai. Instead,
the algorithm tries to “generalize” the examples into a program that
makes minimal use of conditional branches.

Although the synthesis algorithm’s job is fundamentally diffi-
cult due to the combinatorial search space of possible programs,
our algorithm addresses this challenge using a combination of three
technical ideas: (1) type-aware inductive generalization, (2) the use
of deduction to guide the solution of subproblems; and (3) best-first
enumerative search.

Inductive generalization Rather than blindly searching for a tar-
get program, our method generalizes the user-provided examples
into a set of hypotheses about this program. A hypothesis is ei-
ther a concrete program or a “skeleton” that contains placeholders
(“holes”) for unknown programs. For instance, a hypothesis h for a
program e might be of the form �x. map f⇤ x where f⇤ stands for
an unknown program. To synthesize a program from a hypothesis,
we must substitute holes such as f⇤ by concrete programs.

Our algorithm generates hypotheses in a type-aware manner:
We infer a type from the input-output examples and only generate
hypotheses that can be concretized to programs of this type. For
instance, our algorithm generates the hypothesis �x. map f⇤ x only
if all input-output examples are of type list[⌧] ! list[⌧]. This
strategy often leads to significant pruning of the search space.

Deduction Once our algorithm generates a hypothesis h in the
form of a program skeleton, we must solve one or more subprob-
lems in order to synthesize the unknown functions that appear in
h. For this purpose, our algorithm uses automated deduction to ef-
ficiently find a solution to the subproblems. In particular, we use
deductive reasoning in two ways:

• Refutation. First, deduction is used to quickly refute certain
hypotheses. For instance, consider an example of the form
[1, 1] 7! [2, 3] and the hypothesis h ⌘ �x. map f⇤ x. Our
deduction engine infers that this hypothesis h cannot be appro-
priate in this case, as no function maps the number 1 in the
input list to two distinct numbers 2 and 3 in the output list.

• Example inference. Second, deduction is used to generate new
examples that guide the search for missing functions. Consider
again the hypothesis �x. map f⇤ x and the example [1, 2] 7!
[3, 4]. In this case, the deduction engine uses properties of the
map combinator to infer two examples for f⇤: 1 7! 3 and
2 7! 4. To find f⇤, we invoke the synthesis algorithm on these
examples.

Best-first enumerative search Whether we are solving the top-
level synthesis problem or a subproblem, we will eventually get
to a point where inductive generalization and deduction no longer
help us. In this case, our method falls back on enumerative search.
In particular, we explore the space of all expressions that fit our
hypothesis and check whether the generated expressions are con-
sistent with the provided input-output examples. Also, we may find
that a specific hypothesis cannot be realized into a program that fits
the examples. In this case, our algorithm uses enumerative search
to pick a new hypothesis.

Using the principle of Occam’s razor, our search algorithm pri-
oritizes simpler expressions and hypotheses. Specifically, the algo-
rithm maintains a “frontier” of candidate expressions and hypothe-
ses that need to be explored next and, at each point in the search,
picks the least-cost item from this frontier. We show that this search
strategy allows us synthesize the simplest program that fits the ex-
amples.

Results We have implemented our algorithm in a tool called �2,
and we empirically demonstrate that our technical insights can be

combined into a scalable algorithm1. The benchmarks for our ex-
periments include over 40 synthesis problems involving lists, trees,
and nested data structures such as lists of lists and trees of lists.
We show that �2 can successfully solve these benchmarks, typi-
cally within a few seconds. The programs that �2 synthesizes can
be complex but also elegant. For example, �2 is able to synthe-
size a program that is believed to be the world’s earliest functional
pearl [7].

Organization The paper is organized as follows. In Section 2, we
present three motivating examples for our approach. After formal-
izing the problem in Section 3, we present our synthesis algorithm
in Section 4. An evaluation is presented in Section 5, and related
work is discussed in Section 6. Finally, we conclude with some
discussion in Section 7.

2. Motivating examples
In this section, we illustrate our method’s capabilities using three
examples.

2.1 Manipulating lists of lists
Consider a high-school teacher who wants to modify a collection
of student scores. These scores are represented as a list x =

[l1, . . . , ln] of lists, where each list li contains the i-th student’s
scores. The teacher’s goal is to write a function dropmins that
transforms x into a new list where each student’s lowest score is
dropped. For instance, we require that

dropmins [[1,3,5],[5, 3, 2]] = [3, 5], [5, 3].

Our �2 system can synthesize the following implementation of
this function in 114.65 seconds:

dropmins x = map f x

where f y = filter g y

where g z = foldl h False y

where h t w = t || (w < z)

Here, foldl, map, and filter refer respectively to the standard
left-fold, map, and filter operators 2.

Note the complex interplay between scoping and higher-order
functions in this example. For example, the occurrence of z in line
4 is bound by the enclosing definition of g, and the occurrence of y
in line 3 is bound by the enclosing definition of f.

The input-output examples used in the synthesis task are as
follows.

[] 7! []

[[1]] 7! [[]]

[[1, 3, 5], [5, 3, 2]] 7! [[3, 5], [5, 3]]

[[8, 4, 7, 2], [4, 6, 2, 9], [3, 4, 1, 0]] 7!
[[8, 4, 7] [4, 6, 9], [3, 4, 1]]

2.2 Transforming trees
Consider a user who wants to write a program to mine family trees.
A node in such a tree represents a person; the node is annotated
with a set of attributes including the year when the person was
born. Given a family tree, the user’s goal is to generate a list of
persons in the family who were born between 1800 and 1820.

Suppose nodes of a family tree are labeled by pairs (v, by),
where by is the birth year of a particular person and v represents
the remaining attributes of that person. Given such a family tree,
our synthesis task is to produce a program that generates a list of

1 The name �2 stands for “Lambda Learner”.
2 While �2 generates its outputs in a �-calculus, we use a Haskell-like
notation for readability.

rithm is unlikely to return a program that does an n-way case split
on its input and returns bi whenever the input is equal to ai. Instead,
the algorithm tries to “generalize” the examples into a program that
makes minimal use of conditional branches.

Although the synthesis algorithm’s job is fundamentally diffi-
cult due to the combinatorial search space of possible programs,
our algorithm addresses this challenge using a combination of three
technical ideas: (1) type-aware inductive generalization, (2) the use
of deduction to guide the solution of subproblems; and (3) best-first
enumerative search.

Inductive generalization Rather than blindly searching for a tar-
get program, our method generalizes the user-provided examples
into a set of hypotheses about this program. A hypothesis is ei-
ther a concrete program or a “skeleton” that contains placeholders
(“holes”) for unknown programs. For instance, a hypothesis h for a
program e might be of the form �x. map f⇤ x where f⇤ stands for
an unknown program. To synthesize a program from a hypothesis,
we must substitute holes such as f⇤ by concrete programs.

Our algorithm generates hypotheses in a type-aware manner:
We infer a type from the input-output examples and only generate
hypotheses that can be concretized to programs of this type. For
instance, our algorithm generates the hypothesis �x. map f⇤ x only
if all input-output examples are of type list[⌧] ! list[⌧]. This
strategy often leads to significant pruning of the search space.

Deduction Once our algorithm generates a hypothesis h in the
form of a program skeleton, we must solve one or more subprob-
lems in order to synthesize the unknown functions that appear in
h. For this purpose, our algorithm uses automated deduction to ef-
ficiently find a solution to the subproblems. In particular, we use
deductive reasoning in two ways:

• Refutation. First, deduction is used to quickly refute certain
hypotheses. For instance, consider an example of the form
[1, 1] 7! [2, 3] and the hypothesis h ⌘ �x. map f⇤ x. Our
deduction engine infers that this hypothesis h cannot be appro-
priate in this case, as no function maps the number 1 in the
input list to two distinct numbers 2 and 3 in the output list.

• Example inference. Second, deduction is used to generate new
examples that guide the search for missing functions. Consider
again the hypothesis �x. map f⇤ x and the example [1, 2] 7!
[3, 4]. In this case, the deduction engine uses properties of the
map combinator to infer two examples for f⇤: 1 7! 3 and
2 7! 4. To find f⇤, we invoke the synthesis algorithm on these
examples.

Best-first enumerative search Whether we are solving the top-
level synthesis problem or a subproblem, we will eventually get
to a point where inductive generalization and deduction no longer
help us. In this case, our method falls back on enumerative search.
In particular, we explore the space of all expressions that fit our
hypothesis and check whether the generated expressions are con-
sistent with the provided input-output examples. Also, we may find
that a specific hypothesis cannot be realized into a program that fits
the examples. In this case, our algorithm uses enumerative search
to pick a new hypothesis.

Using the principle of Occam’s razor, our search algorithm pri-
oritizes simpler expressions and hypotheses. Specifically, the algo-
rithm maintains a “frontier” of candidate expressions and hypothe-
ses that need to be explored next and, at each point in the search,
picks the least-cost item from this frontier. We show that this search
strategy allows us synthesize the simplest program that fits the ex-
amples.

Results We have implemented our algorithm in a tool called �2,
and we empirically demonstrate that our technical insights can be

combined into a scalable algorithm1. The benchmarks for our ex-
periments include over 40 synthesis problems involving lists, trees,
and nested data structures such as lists of lists and trees of lists.
We show that �2 can successfully solve these benchmarks, typi-
cally within a few seconds. The programs that �2 synthesizes can
be complex but also elegant. For example, �2 is able to synthe-
size a program that is believed to be the world’s earliest functional
pearl [7].

Organization The paper is organized as follows. In Section 2, we
present three motivating examples for our approach. After formal-
izing the problem in Section 3, we present our synthesis algorithm
in Section 4. An evaluation is presented in Section 5, and related
work is discussed in Section 6. Finally, we conclude with some
discussion in Section 7.

2. Motivating examples
In this section, we illustrate our method’s capabilities using three
examples.

2.1 Manipulating lists of lists
Consider a high-school teacher who wants to modify a collection
of student scores. These scores are represented as a list x =

[l1, . . . , ln] of lists, where each list li contains the i-th student’s
scores. The teacher’s goal is to write a function dropmins that
transforms x into a new list where each student’s lowest score is
dropped. For instance, we require that

dropmins [[1,3,5],[5, 3, 2]] = [3, 5], [5, 3].

Our �2 system can synthesize the following implementation of
this function in 114.65 seconds:

dropmins x = map f x

where f y = filter g y

where g z = foldl h False y

where h t w = t || (w < z)

Here, foldl, map, and filter refer respectively to the standard
left-fold, map, and filter operators 2.

Note the complex interplay between scoping and higher-order
functions in this example. For example, the occurrence of z in line
4 is bound by the enclosing definition of g, and the occurrence of y
in line 3 is bound by the enclosing definition of f.

The input-output examples used in the synthesis task are as
follows.

[] 7! []

[[1]] 7! [[]]

[[1, 3, 5], [5, 3, 2]] 7! [[3, 5], [5, 3]]

[[8, 4, 7, 2], [4, 6, 2, 9], [3, 4, 1, 0]] 7!
[[8, 4, 7] [4, 6, 9], [3, 4, 1]]

2.2 Transforming trees
Consider a user who wants to write a program to mine family trees.
A node in such a tree represents a person; the node is annotated
with a set of attributes including the year when the person was
born. Given a family tree, the user’s goal is to generate a list of
persons in the family who were born between 1800 and 1820.

Suppose nodes of a family tree are labeled by pairs (v, by),
where by is the birth year of a particular person and v represents
the remaining attributes of that person. Given such a family tree,
our synthesis task is to produce a program that generates a list of

1 The name �2 stands for “Lambda Learner”.
2 While �2 generates its outputs in a �-calculus, we use a Haskell-like
notation for readability.

Synthesizing Data Structure Transformations from
Input-Output Examples , PLDI 2016

Summary

• Many real problems are unsolvable by algorithms

• They can be approximately but usefully solved

Announcement

• Last class: 6/7 (Tuesday)

• Final exam: 6/9 (Thursday) in class

