COSE215: Theory of Computation

Lecture 16 - Undecidability

Hakjoo Oh
2016 Spring

Recursively Enumerable Languages

Definition

A language \boldsymbol{L} is recursively enumerable (RE) if there exists a Turing machine that accepts it.

$$
L \text { is RE } \Leftrightarrow \exists M \in \boldsymbol{T} M . \forall w \in L . q_{0} w \vdash^{*} x_{1} q_{f} x_{2}
$$

Recursive Languages (Decidable Languages)

Definition

A language \boldsymbol{L} is recursive if there exists a Turing machine that accepts it and always terminates.

Overview

\boldsymbol{L}_{d} : A language that is not recursively enumerable

$$
L_{d}=\left\{w_{i} \mid w_{i} \notin L\left(M_{i}\right)\right\}
$$

Preliminary steps:
(1) Enumerating binary strings
(2) Representing Turing machines in binary strings

Enumerating Binary Strings

- A binary string can be represented by a unique integer i :

The integer for binary string w is the integer value of $\mathbf{1 w}$.

- w_{i} : the i th binary string

$$
\begin{aligned}
& w_{1}=\epsilon \\
& w_{2}=0 \\
& w_{3}=1 \\
& w_{4}=00 \\
& w_{5}=01 \\
& w_{6}=10 \\
& w_{7}=11 \\
& w_{8}=000 \\
& w_{9}=001
\end{aligned}
$$

Representing Turing Machines as Binary Strings

$$
M=\left(Q,\{0,1\}, \Gamma, \delta, q_{1}, B, F\right)
$$

(1) $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$
(3) $\Gamma=\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{s}\right\}$
(0) Directions: $\left\{D_{1}, D_{2}\right\}$

Encoding for the transition function $\delta\left(\boldsymbol{q}_{i}, \boldsymbol{X}_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)$:

$$
0^{i} 10^{j} 10^{k} 10^{l} 10^{m}
$$

Encoding for the Turing machine M :

$$
C_{1} 11 C_{2} 11 \cdots C_{n-1} 11 C_{n}
$$

(C_{i} : encoding for the i th transition rule of M).

Example

$$
\begin{array}{cll}
M=\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{0,1\},\right. & \left.\{0,1, B\}, \delta, q_{1}, B,\left\{q_{2}\right\}\right) \\
\delta\left(q_{1}, 1\right) & =\left(q_{3}, 0, R\right), & 0100100010100 \\
\delta\left(q_{3}, 0\right) & =\left(q_{1}, 1, R\right), & 0001010100100 \\
\delta\left(q_{3}, 1\right) & =\left(q_{2}, 0, R\right), & 00010010010100 \\
\delta\left(q_{3}, B\right) & =\left(q_{3}, 1, L\right), & 0001000100010010
\end{array}
$$

Encoding in binary string:
01001000101001100010101001001100010010010100110001000100010010

Turing machines can be ordered

$\boldsymbol{M}_{\boldsymbol{i}}$: The \boldsymbol{i} th Turing machine
Definition
We define $\boldsymbol{M}_{\boldsymbol{i}}$ to be the Turing machine whose binary representation is $\boldsymbol{w}_{\boldsymbol{i}}$.

Turing machines can be ordered

M_{i} : The i th Turing machine

Definition

We define $\boldsymbol{M}_{\boldsymbol{i}}$ to be the Turing machine whose binary representation is $\boldsymbol{w}_{\boldsymbol{i}}$.
When $\boldsymbol{M}_{\boldsymbol{i}}$ is not a valid Turing machine, define $\boldsymbol{M}_{\boldsymbol{i}}$ to be a Turing machine with one state and no transitions, e.g., $\boldsymbol{M}_{\mathbf{1}}$.

The Diagonalization Language

Definition
$L_{d}=\left\{w_{i} \mid w_{i} \notin L\left(M_{i}\right)\right\}$
Theorem
$\boldsymbol{L}_{\boldsymbol{d}}$ is not a recursively enumerable language.

	j					
	1		2	3	4	...
1	0		1	1	0	...
$i 2$	1		1	0	0	\ldots
3	0		0	1	1	...
4	0		1	0	1	
:				\vdots		

L_{u} : A language that is RE but not recursive

$$
L_{u}=\{(M, w) \mid w \in L(M)\}
$$

L_{u} is recursively enumerable

The Turing machine that accepts $L_{u}=\{(M, w) \mid \boldsymbol{w} \in L(M)\}$:

"Universal Turing Machine"

Properties of complements (1)

Lemma

If \boldsymbol{L} is a recursive language, then so is $\overline{\boldsymbol{L}}$.

Properties of Complements (2)

Lemma

If both a language \boldsymbol{L} and its complement are $R E$, then \boldsymbol{L} is recursive.

L_{u} is not recursive

Theorem
L_{u} is $R E$ but not recursive.

- Suppose $\boldsymbol{L}_{\boldsymbol{u}}$ were recursive.
- Then by the property of complements, $\overline{\boldsymbol{L}_{\boldsymbol{u}}}$ is also recursive.
- However, if we have a TM \boldsymbol{M} to accept $\overline{\boldsymbol{L}_{\boldsymbol{u}}}$, then we can construct a TM to accept $\boldsymbol{L}_{\boldsymbol{d}}$ (explained next).
- We already know that $\boldsymbol{L}_{\boldsymbol{d}}$ is not RE, contradiction.

Construction of TM to accept L_{d} from TM to accept ${\overline{L_{u}}}^{\prime}$ Suppose $\boldsymbol{L}(\boldsymbol{M})=\overline{\boldsymbol{L}_{\boldsymbol{u}}}$. We construct \boldsymbol{M}^{\prime} s.t. $\boldsymbol{L}\left(\boldsymbol{M}^{\prime}\right)=\boldsymbol{L}_{\boldsymbol{d}}$ as follows:

Summary

We have
(1) defined the class of recursively enumerable languages,
(2) defined the class of recursive languages,
(3) defined a non-recursively enumerable language $\boldsymbol{L}_{\boldsymbol{d}}$ and prove it, and
(9) defined a non-recursive language $\boldsymbol{L}_{\boldsymbol{u}}$ and prove it.

