COSE215: Theory of Computation Lecture 16 — Undecidability

Hakjoo Oh 2016 Spring

Recursively Enumerable Languages

Definition

A language L is *recursively enumerable* (RE) if there exists a Turing machine that accepts it.

L is RE $\Leftrightarrow \exists M \in TM. \forall w \in L. q_0w \vdash^* x_1q_fx_2$

Recursive Languages (Decidable Languages)

Definition

A language L is *recursive* if there exists a Turing machine that accepts it and always terminates.

Overview

 L_d : A language that is not recursively enumerable

$$L_d = \{w_i \mid w_i \not\in L(M_i)\}$$

Preliminary steps:

- Enumerating binary strings
- Representing Turing machines in binary strings

Enumerating Binary Strings

• A binary string can be represented by a unique integer *i*:

The integer for binary string w is the integer value of 1w.

• w_i : the *i*th binary string

w_1	=	ϵ
w_2	=	0
w_3	=	1
w_4	=	00
w_5	=	01
w_6	=	10
w_7	=	11
w_8	=	000
w_9	=	001

:

Representing Turing Machines as Binary Strings

$$M=(Q,\{0,1\},\Gamma,\delta,q_1,B,F)$$

•
$$Q = \{q_1, q_2, \dots, q_r\}$$

• $\Gamma = \{X_1, X_2, X_3, \dots, X_s\}$
• Directions : $\{D_1, D_2\}$

Encoding for the transition function $\delta(q_i, X_j) = (q_k, X_l, D_m)$:

$0^i 10^j 10^k 10^l 10^m$

Encoding for the Turing machine M:

$C_1 11 C_2 11 \cdots C_{n-1} 11 C_n$

 $(C_i:$ encoding for the *i*th transition rule of M).

Example

$$egin{aligned} M &= (\{q_1,q_2,q_3\},\{0,1\},\{0,1,B\},\delta,q_1,B,\{q_2\})\ \delta(q_1,1) &= (q_3,0,R), & 0100100010100\ \delta(q_3,0) &= (q_1,1,R), & 0001010100100\ \delta(q_3,1) &= (q_2,0,R), & 00010010010100\ \delta(q_3,B) &= (q_3,1,L), & 000100010010010 \end{aligned}$$

Encoding in binary string:

Turing machines can be ordered

 M_i : The ith Turing machine

Definition

We define M_i to be the Turing machine whose binary representation is w_i .

Turing machines can be ordered

 M_i : The ith Turing machine

Definition

We define M_i to be the Turing machine whose binary representation is w_i .

When M_i is not a valid Turing machine, define M_i to be a Turing machine with one state and no transitions, e.g., M_1 .

The Diagonalization Language

Definition

$$L_d = \{w_i \mid w_i \not\in L(M_i)\}$$

Theorem

 L_d is not a recursively enumerable language.

 L_u : A language that is RE but not recursive

$$L_u = \{(M,w) \mid w \in L(M)\}$$

L_u is recursively enumerable

The Turing machine that accepts $L_u = \{(M, w) \mid w \in L(M)\}$:

"Universal Turing Machine"

Hakjoo Oh

COSE215 2016 Spring, Lecture 16

Properties of complements (1)

Lemma

If L is a recursive language, then so is \overline{L} .

Properties of Complements (2)

Lemma

If both a language L and its complement are RE, then L is recursive.

L_u is not recursive

Theorem

 L_u is RE but not recursive.

- Suppose L_u were recursive.
- ullet Then by the property of complements, $\bar{L_u}$ is also recursive.
- However, if we have a TM M to accept $\bar{L_u}$, then we can construct a TM to accept L_d (explained next).
- We already know that L_d is not RE, contradiction.

Construction of TM to accept L_d from TM to accept $\overline{L_u}$ Suppose $L(M) = \overline{L_u}$. We construct M' s.t. $L(M') = L_d$ as follows:

$$w \longrightarrow Copy \longrightarrow (w,w) \longrightarrow M \longrightarrow reject \longrightarrow reject$$

Summary

We have

- I defined the class of recursively enumerable languages,
- defined the class of recursive languages,
- ${f 0}$ defined a non-recursively enumerable language L_d and prove it, and
- 0 defined a non-recursive language L_u and prove it.