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Today

Icebreaking: Introduce yourself

Mathematical backgrounds and notation
I Sets
I Inductive proofs
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Icebreaking

Introduce yourself:

Free format. Say anything.

Nothing to talk about? major, grade, interests, hobbies, specialty,
goal, motivation for this course, what you expect from this course, etc
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Sets

A set is a collection of elements, e.g.,
I S = {0, 1, 2} = {x ∈ N | 0 ≤ x ≤ 2}
I S = {2, 4, 6, . . .} = {x ∈ N | x is even}

Notations:
I ∅: the empty set
I S1 ⊆ S2 iff ∀x ∈ S1. x ∈ S2

I S1 ⊂ S2 if S1 ⊆ S2 and S1 6= S2, e.g., {1, 2} ⊂ {1, 2, 3},
{1, 2} 6⊂ {1, 2}

I |S|: the number of elements in set S
I S1 and S2 are disjoint iff S1 ∩ S2 = ∅.
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Construction of Sets

Union, intersection, and difference:

S1 ∪ S2 = {x | x ∈ S1 ∨ x ∈ S2}
S1 ∩ S2 = {x | x ∈ S1 ∧ x ∈ S2}
S1 − S2 = {x | x ∈ S1 ∧ x 6∈ S2}

S = {x | x ∈ U ∧ x 6∈ S}
Powerset: 2S = P(S) = {x | x ⊆ S}
Cartesian product:

S1 × S2 = {(x, y) | x ∈ S1 ∧ y ∈ S2}

In general,

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) | xi ∈ Si}
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Partition

When S1, S2, . . . , Sn are subsets of a given set S, S1, S2, . . . , Sn forms
a partition of S iff:

1 S1, S2, . . . , Sn are mutually disjoint:

∀i, j. i 6= j =⇒ Si ∩ Sj = ∅

2 S1, S2, . . . , Sn cover S: ⋃
1≤i≤n

Si = S

3 none of Si is empty: ∀i.Si 6= ∅.
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Inductive proofs

In CS, every set is inductively defined. E.g.,

Example (Inductive Definition of Trees)

A set of trees is defined as follows:

1 (Basis) A single node (called root) is a tree.

2 (Induction) If T1, T2, . . . , Tk are trees, then the following is also a tree:

1 Begin with a new node N , which is the root of the tree.
2 Add edges from N to the roots of each of the trees T1, T2, . . . , Tk.

Example (Inductive Definition of Arithmetic Expressions)

A set of arithmetic expressions is defined as follows:

(Basis) Any number or letter (i.e., a variable) is an expression.

(Induction) If E and F are expressions, then so are E + F , E ∗ F , and
(E).
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Inductive Proofs

Induction is used to prove properties about inductively defined sets. Let S
be an inductively-defined set. Let P (x) be a property of x. To show that,
for all x ∈ S.P (x), it suffices to show that:

1 (Base case): Show P (x) for all basis elements x ∈ S.

2 (Inductive case): For each inductive rule using elements x1, . . . , xk

of S to construct an element x, show that

if P (x1), . . . , P (xk) then P (x)

P (x1), . . . , P (xk): induction hypotheses.
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Inductive Proofs: Example
Prove that every tree has one more node than it has edges.

Proof.
Formally, what we prove is P (T ) =“if T is a tree, and T has n nodes and e edges, then
n = e + 1”.

1 Base case: The base case is when T is a single node. Then, n = 1 and e = 0, so the
relationship n = e + 1 holds.

2 Inductive case: The inductive case is when T is built with root node N and k smaller

trees T1, T2, . . . , Tk.

1 Induction hypothesis: The statements P (Ti) holds for i = 1, 2, . . . , k. That is
Ti have ni nodes and ei edges; then ni = ei + 1.

2 To Show: P (T ) holds: if T has n nodes and e edges, then n = e+1. The nodes
of T are node N and all the nodes of the Ti’s, i.e., n = 1 + n1 + · · · + nk The
edges of T are the k edges we added explicitly in the inductive definition step, plus
the edges of the Ti’s. Hence, T has e = k + e1 + · · · + ek edges.

n = 1 + n1 + · · · + nk def. of n

= 1 + (e1 + 1) + · · · + (ek + 1) induction hypothesis

= 1 + k + e1 + · · · + ek

= 1 + e def. of e
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Inductive Proofs: Example
Prove that every expression has an equal number of left and right
parentheses.

Proof.
Formally, the formal statement P (G) we need to prove is: “if G has l left parentheses and r
right parentheses, then l = r.”

1 Base case: The base case is when G is a number or a variable, in which cases l = r = 0.

2 Inductive case: There are three cases, where G is constructed recursively from smaller

expressions:

I G = E + F :
1 Induction hypothesis: The statement holds for all smaller expressions: for E,

lE = rE , and for F , lF = rF .
2 To Show: P (G) holds: lG = rG:

lG = lE + lF

= rE + rF I.H.

= rG

I G = E ∗ F : similar
I G = (E): similar
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Summary

Sets: definition, notations, constructions

Inductive definitions and proofs.
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