COSE215: Theory of Computation

$$
\text { Lecture } 19 \text { — Undecidability (1) }
$$

Hakjoo Oh
2015 Spring

Undecidable Problems

Decidable problems (=Languages) are those that can be solved (=accepted) by computers (=Turing machines).

Undecidable Problems

Decidable problems (=Languages) are those that can be solved (=accepted) by computers (=Turing machines).

- Recursive (= decidable)
- Recursively enumerable (=semi-decidable)

Undecidable Problems

Decidable problems (=Languages) are those that can be solved (=accepted) by computers (=Turing machines).

- Recursive (= decidable)
- Recursively enumerable (=semi-decidable)

Undecidable problems are those that cannot be solved by computers.

- Non-recursive (= undecidable)
- Non-recursively enumerable (=semi-undecidable)

Today

(1) Define the class of recursively enumerable languages
(2) Define the class of recursive languages
(3) Define a non-recursively enumerable language $\boldsymbol{L}_{\boldsymbol{d}}$ and prove it
(9) Define a non-recursive language $\boldsymbol{L}_{\boldsymbol{u}}$ and prove it

Decidable Problems

Definition

A language \boldsymbol{L} is recursively enumerable (RE) if there exists a Turing machine that accepts it.

$$
\boldsymbol{L} \text { is RE } \Leftrightarrow \exists \boldsymbol{M} \in \boldsymbol{T} \boldsymbol{M} . \forall w \in \boldsymbol{L} . \boldsymbol{q}_{0} w \vdash^{*} \boldsymbol{x}_{1} \boldsymbol{q}_{\boldsymbol{f}} \boldsymbol{x}_{2}
$$

Decidable Problems

Definition

A language L is recursively enumerable (RE) if there exists a Turing machine that accepts it.

$$
L \text { is } \mathrm{RE} \Leftrightarrow \exists M \in T M . \forall w \in L . q_{0} w \vdash^{*} x_{1} q_{f} x_{2}
$$

Definition

A language \boldsymbol{L} is recursive if there exists a Turing machine that accepts it and always terminates.
(1) If \boldsymbol{w} is in \boldsymbol{L}, then \boldsymbol{M} accepts
(2) If \boldsymbol{w} is not in \boldsymbol{L}, then \boldsymbol{M} eventually halts

Recursive / RE / Non-RE Languages

L_{d} : A language that is not recursively enumerable

We aim to define a language $\boldsymbol{L}_{\boldsymbol{d}}$ that is not recursively enumerable:

$$
L_{d}=\left\{w_{i} \mid w_{i} \notin L\left(M_{i}\right)\right\}
$$

Representing Turing Machines as Binary Strings

$$
M=\left(Q,\{0,1\}, \Gamma, \delta, q_{1}, B, F\right)
$$

(1) $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$
(3) $\Gamma=\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{s}\right\}$

Representing Turing Machines as Binary Strings

$$
M=\left(Q,\{0,1\}, \Gamma, \delta, q_{1}, B, F\right)
$$

(1) $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$
(c) $\Gamma=\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{s}\right\}$

We encode the transition function

$$
\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D\right)
$$

by

- $0^{i} 10^{j} 10^{k} 10^{l} 10$ when $D=L$
- $\mathbf{0}^{i} \mathbf{1 0}^{j} \mathbf{1 0}^{k} \mathbf{1 0}^{l} \mathbf{1 0 0}$ when $D=R$

Representing Turing Machines as Binary Strings

$$
M=\left(Q,\{0,1\}, \Gamma, \delta, q_{1}, B, F\right)
$$

(1) $Q=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$
(c) $\Gamma=\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{s}\right\}$

We encode the transition function

$$
\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D\right)
$$

by

- $0^{i} 10^{j} 10^{k} 10^{l} 10$ when $D=L$
- $\mathbf{0}^{i} \mathbf{1 0}^{j} \mathbf{1 0}^{k} \mathbf{1 0} 0^{l} \mathbf{1 0 0}$ when $D=R$

The entire Turing machine is represented by

$$
C_{1} 11 C_{2} 11 \cdots C_{n-1} 11 C_{n}
$$

Example

$$
\begin{array}{cll}
M=\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{0,1\},\right. & \left.\{0,1, B\}, \delta, q_{1}, B,\left\{q_{2}\right\}\right) \\
\delta\left(q_{1}, 1\right) & =\left(q_{3}, 0, R\right), & 0100100010100 \\
\delta\left(q_{3}, 0\right) & =\left(q_{1}, 1, R\right), & 0001010100100 \\
\delta\left(q_{3}, 1\right) & =\left(q_{2}, 0, R\right), & 00010010010100 \\
\delta\left(q_{3}, B\right) & =\left(q_{3}, 1, L\right), & 0001000100010010
\end{array}
$$

The entire Turing machine:
01001000101001100010101001001100010010010100110001000100

Binary strings can be ordered

$$
\begin{aligned}
& w_{1}=\boldsymbol{\lambda} \\
& w_{2}=0 \\
& w_{3}=1 \\
& w_{4}=00 \\
& w_{5}=01 \\
& w_{6}=10 \\
& w_{7}=11 \\
& w_{8}=000 \\
& w_{9}=001
\end{aligned}
$$

Binary strings can be ordered

$$
\begin{aligned}
& w_{1}=\boldsymbol{\lambda} \\
& w_{2}=0 \\
& w_{3}=1 \\
& w_{4}=00 \\
& w_{5}=01 \\
& w_{6}=10 \\
& w_{7}=11 \\
& w_{8}=000 \\
& w_{9}=001
\end{aligned}
$$

The order of binary string w is the integer value of $\mathbf{1 w}$

Turing machines can be ordered

$\boldsymbol{M}_{\boldsymbol{i}}$: The \boldsymbol{i} th Turing machine
Definition
We define $\boldsymbol{M}_{\boldsymbol{i}}$ to be the Turing machine whose binary representation is $\boldsymbol{w}_{\boldsymbol{i}}$.

Turing machines can be ordered

M_{i} : The i th Turing machine

Definition

We define $\boldsymbol{M}_{\boldsymbol{i}}$ to be the Turing machine whose binary representation is $\boldsymbol{w}_{\boldsymbol{i}}$.
When $\boldsymbol{M}_{\boldsymbol{i}}$ is not a valid Turing machine, define $\boldsymbol{M}_{\boldsymbol{i}}$ to be a Turing machine with one state and no transitions, e.g., $\boldsymbol{M}_{\mathbf{1}}$.

The definition of L_{d}

Definition

$L_{d}=\left\{w_{i} \mid w_{i} \notin L\left(M_{i}\right)\right\}$

Theorem

$\boldsymbol{L}_{\boldsymbol{d}}$ is not a recursively enumerable language.

Proof Sketch.

Suppose $\boldsymbol{L}_{\boldsymbol{d}}=\boldsymbol{L}(\boldsymbol{M})$ for some TM \boldsymbol{M}. Let \boldsymbol{k} be the number of \boldsymbol{M}, i.e., $M=M_{k}$.
Ask if $\boldsymbol{w}_{\boldsymbol{k}}$ is in $\boldsymbol{L}_{\boldsymbol{d}}$.

- If $\boldsymbol{w}_{k} \in L_{d}$, then M accepts \boldsymbol{w}_{k}. But then, by definition of $\boldsymbol{L}_{\boldsymbol{d}}$, $w_{i} \notin \boldsymbol{L}_{d}$. Contradiction.
- If $\boldsymbol{w}_{\boldsymbol{k}} \notin \boldsymbol{L}_{\boldsymbol{d}}$, then \boldsymbol{M} does not accept $\boldsymbol{w}_{\boldsymbol{k}}$. But then, by definition of $L_{d}, w_{k} \in L_{d}$. Contradiction.
\boldsymbol{L}_{u} : A language that is RE but not recursive
We define a language $\boldsymbol{L}_{\boldsymbol{u}}$ that is not recursively enumerable:

$$
L_{u}=\{(M, w) \mid w \in L(M)\}
$$

L_{u} is recursively enumerable

The universal Turing machine accepts $\boldsymbol{L}_{\boldsymbol{u}}=\{(\boldsymbol{M}, \boldsymbol{w}) \mid \boldsymbol{w} \in L(M)\}$.

A property of complements

Lemma
If \boldsymbol{L} is a recursive language, then so is $\overline{\boldsymbol{L}}$.

A property of complements

Lemma

If \boldsymbol{L} is a recursive language, then so is $\overline{\boldsymbol{L}}$.
Let $\boldsymbol{L}=\boldsymbol{L}(\boldsymbol{M})$ for some TM \boldsymbol{M} that always halts. We construct a TM \bar{M} such that $\bar{L}=\boldsymbol{L}(\bar{M})$ as follows:

L_{u} is not recursive

Theorem
L_{u} is $R E$ but not recursive.

- Suppose $\boldsymbol{L}_{\boldsymbol{u}}$ were recursive.
- Then by the property of complements, $\overline{\boldsymbol{L}_{\boldsymbol{u}}}$ is also recursive.
- However, if we have a TM \boldsymbol{M} to accept $\overline{\boldsymbol{L}_{\boldsymbol{u}}}$, then we can construct a TM to accept $\boldsymbol{L}_{\boldsymbol{d}}$ (explained next).
- We already know that $\boldsymbol{L}_{\boldsymbol{d}}$ is not RE, contradiction.

Construction of TM to accept L_{d} from TM to accept ${\overline{L_{u}}}^{\prime}$ Suppose $\boldsymbol{L}(\boldsymbol{M})=\overline{\boldsymbol{L}_{\boldsymbol{u}}}$. We construct \boldsymbol{M}^{\prime} s.t. $\boldsymbol{L}\left(\boldsymbol{M}^{\prime}\right)=\boldsymbol{L}_{\boldsymbol{d}}$ as follows:

Summary

- decidable / undecidable problems
- concrete examples of undecidable languages

Summary

- decidable / undecidable problems
- concrete examples of undecidable languages

Note that undecidable languages are different from intractable problems:

- undecidable problems: fundamentally unsolvable
- intractable problems: solvable but no efficient algorithms are known

