COSE215: Theory of Computation Lecture 19 — Undecidability (1)

Hakjoo Oh 2015 Spring

Undecidable Problems

Decidable problems (=Languages) are those that can be solved (=accepted) by computers (=Turing machines).

Undecidable Problems

Decidable problems (=Languages) are those that can be solved (=accepted) by computers (=Turing machines).

- Recursive (= decidable)
- Recursively enumerable (=semi-decidable)

Undecidable Problems

Decidable problems (=Languages) are those that can be solved (=accepted) by computers (=Turing machines).

- Recursive (= decidable)
- Recursively enumerable (=semi-decidable)

Undecidable problems are those that cannot be solved by computers.

- Non-recursive (= undecidable)
- Non-recursively enumerable (=semi-undecidable)

Today

- Define the class of recursively enumerable languages
- Of the class of recursive languages
- **③** Define a non-recursively enumerable language L_d and prove it
- ${igsident}$ Define a non-recursive language L_u and prove it

Decidable Problems

Definition

A language L is *recursively enumerable* (RE) if there exists a Turing machine that accepts it.

 $L \text{ is RE} \Leftrightarrow \exists M \in TM. \forall w \in L. q_0w \vdash^* x_1q_fx_2$

Decidable Problems

Definition

A language L is *recursively enumerable* (RE) if there exists a Turing machine that accepts it.

$$L ext{ is RE} \Leftrightarrow \exists M \in TM. \ \forall w \in L. \ q_0w \vdash^* x_1q_fx_2$$

Definition

A language L is *recursive* if there exists a Turing machine that accepts it and always terminates.

- **1** If w is in L, then M accepts
- ② If w is not in L, then M eventually halts

Recursive / RE / Non-RE Languages

L_d : A language that is not recursively enumerable

We aim to define a language L_d that is not recursively enumerable:

 $L_d = \{w_i \mid w_i \not\in L(M_i)\}$

Representing Turing Machines as Binary Strings

$$M = (Q, \{0,1\}, \Gamma, \delta, q_1, B, F)$$

$$Q = \{q_1, q_2, \dots, q_r\}$$

$$P = \{X_1, X_2, X_3, \dots, X_s\}$$

Representing Turing Machines as Binary Strings

$$M=(Q,\{0,1\},\Gamma,\delta,q_1,B,F)$$

•
$$Q = \{q_1, q_2, \dots, q_r\}$$

• $\Gamma = \{X_1, X_2, X_3, \dots, X_s\}$

We encode the transition function

$$\delta(q_i, X_j) = (q_k, X_l, D)$$

by

- $0^i 10^j 10^k 10^l 10$ when D = L
- $0^i 10^j 10^k 10^l 100$ when D=R

Representing Turing Machines as Binary Strings

$$M=(Q,\{0,1\},\Gamma,\delta,q_1,B,F)$$

•
$$Q = \{q_1, q_2, \dots, q_r\}$$

• $\Gamma = \{X_1, X_2, X_3, \dots, X_s\}$

We encode the transition function

$$\delta(q_i, X_j) = (q_k, X_l, D)$$

by

- $0^i 10^j 10^k 10^l 10$ when D = L
- $0^i 10^j 10^k 10^l 100$ when D=R

The entire Turing machine is represented by

 $C_1 1 1 C_2 1 1 \cdots C_{n-1} 1 1 C_n$

Example

$$M=(\{q_1,q_2,q_3\},\{0,1\},\{0,1,B\},\delta,q_1,B,\{q_2\})$$

$$egin{array}{rll} \delta(q_1,1)&=&(q_3,0,R),&0100100010100\ \delta(q_3,0)&=&(q_1,1,R),&000101010000\ \delta(q_3,1)&=&(q_2,0,R),&00010010010100\ \delta(q_3,B)&=&(q_3,1,L),&0001000100010010\end{array}$$

The entire Turing machine:

Binary strings can be ordered

w_1	=	λ
w_2	=	0
w_3	=	1
w_4	=	00
w_5	=	01
w_6	=	10
w_7	=	11
w_8	=	000
w_9	=	001
	:	

.

Binary strings can be ordered

w_1	=	λ
w_2	=	0
w_3	=	1
w_4	=	00
w_5	=	01
w_6	=	10
w_7	=	11
w_8	=	000
w_9	=	001
	÷	

The order of binary string $oldsymbol{w}$ is the integer value of $\mathbf{1}oldsymbol{w}$

Turing machines can be ordered

 M_i : The ith Turing machine

Definition

We define M_i to be the Turing machine whose binary representation is w_i .

Turing machines can be ordered

 M_i : The ith Turing machine

Definition

We define M_i to be the Turing machine whose binary representation is w_i .

When M_i is not a valid Turing machine, define M_i to be a Turing machine with one state and no transitions, e.g., M_1 .

The definition of L_d

Definition

 $L_d = \{w_i \mid w_i \not\in L(M_i)\}$

Theorem

 L_d is not a recursively enumerable language.

Proof Sketch.

Suppose $L_d = L(M)$ for some TM M. Let k be the number of M, i.e., $M = M_k$. Ask if w_k is in L_d .

- If $w_k \in L_d$, then M accepts w_k . But then, by definition of L_d , $w_i \not\in L_d$. Contradiction.
- If $w_k \not\in L_d$, then M does not accept w_k . But then, by definition of L_d , $w_k \in L_d$. Contradiction.

L_u : A language that is RE but not recursive

We define a language L_u that is not recursively enumerable:

$$L_u = \{(M, w) \mid w \in L(M)\}$$

L_u is recursively enumerable

The universal Turing machine accepts $L_u = \{(M, w) \mid w \in L(M)\}.$

A property of complements

Lemma

If L is a recursive language, then so is \overline{L} .

A property of complements

Lemma

If L is a recursive language, then so is \overline{L} .

Let L = L(M) for some TM M that always halts. We construct a TM \bar{M} such that $\bar{L} = L(\bar{M})$ as follows:

L_u is not recursive

Theorem

 L_u is RE but not recursive.

- Suppose L_u were recursive.
- ullet Then by the property of complements, $\bar{L_u}$ is also recursive.
- However, if we have a TM M to accept $\bar{L_u}$, then we can construct a TM to accept L_d (explained next).
- We already know that L_d is not RE, contradiction.

Construction of TM to accept L_d from TM to accept $\overline{L_u}$ Suppose $L(M) = \overline{L_u}$. We construct M' s.t. $L(M') = L_d$ as follows:

$$w \longrightarrow Copy \longrightarrow (w,w) \longrightarrow M \longrightarrow reject \longrightarrow reject$$

Summary

- decidable / undecidable problems
- concrete examples of undecidable languages

Summary

- decidable / undecidable problems
- concrete examples of undecidable languages

Note that undecidable languages are different from intractable problems:

- undecidable problems: fundamentally unsolvable
- intractable problems: solvable but no efficient algorithms are known