Safety Proofs of Simple Type System

COSE2012 Programming Languages

Korea University

1. Simply Typed Lambda Calculus

Syntax We consider lambda calculus with boolean types and conditional expressions:

The values in this language are terms defined by the following grammar:

$$v := \mathsf{true} \mid \mathsf{false} \mid \lambda x : T.t$$

Types include primitive boolean types and function types:

$$T ::= Bool \mid T \to T$$

Evaluation Rules

$$\frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2} \ \text{E-APP1}$$

$$\frac{t_2 \rightarrow t_2'}{v_1 \ t_2 \rightarrow v_1 \ t_2'} \ \text{E-APP2}$$

$$\overline{(\lambda x : T.t_{12}) \ v_2 \rightarrow [x \mapsto v_2] t_{12}} \ \text{E-APPABS}$$

$$\overline{\text{if true } t_2 \ t_3 \rightarrow t_2} \ \text{E-IFTRUE}$$

$$\overline{\text{if false } t_2 \ t_3 \rightarrow t_3} \ \text{E-IFFALSE}$$

$$\frac{t_1 \rightarrow t_1'}{\text{if } t_1 \ t_2 \ t_3 \rightarrow \text{if } t_1' \ t_2 \ t_3} \ \text{E-IF}$$

Typing Rules

$$\begin{split} \frac{\Gamma(x) = T}{\Gamma \vdash x : T} & \text{T-VAR} \\ \frac{\Gamma[x \mapsto T_1] \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1.t_2 : T_1 \to T_2} & \text{T-ABS} \\ \frac{\Gamma \vdash t_1 : T_{11} \to T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} & \text{T-APP} \\ \hline \frac{\Gamma \vdash \text{true} : Bool}{\Gamma \vdash \text{true} : Bool} & \text{T-TRUE} \\ \hline \frac{\Gamma \vdash \text{false} : Bool}{\Gamma \vdash \text{fift} \ t_2 : T} & \frac{\Gamma \vdash t_3 : T}{\Gamma \vdash \text{iff} \ t_1 \ t_2 \ t_3 : T} & \text{T-IF} \end{split}$$

2. Safety Proofs

Theorem 1 (Type Safety). Suppose t is a closed term. If $\vdash t : T$, then t does not get stuck during evaluation. Furthermore, if t reaches a value v, then v is of the T type.

Proof. Immediate from Lemma 1 and Lemma 4. □

Lemma 1 (Progress). Suppose t is a closed term. If t is well-typed (i.e., $\vdash t : T$ for some T), then either t is a value or there is some t' with $t \to t'$:

$$\vdash t: T \implies t \text{ is a value or } \exists t'. t \rightarrow t'$$

Proof. By structural induction on t.

- $t \in \{\text{true}, \text{false}\}$: Immediate, since t is a value.
- $t = \lambda x : T.t_1$: Immediate, since t is a value.
- t = x: Cannot occur (because t is closed).
- $t = t_1 t_2$: What we have to show in this case is as follows:

$$\vdash t_1 \ t_2 : T \implies \exists t'. \ (t_1 \ t_2) \rightarrow t'$$

First, by typing rule T-APP, we know that t_1 and t_2 are well-typed:

$$\frac{\Gamma \vdash t_1: T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2: T_{11}}{\Gamma \vdash t_1 \ t_2: T_{12}}$$

where $T = T_{12}$. By the induction hypothesis (IH), either t_1 is a value or else it can make a step of evaluation, and likewise t_2 :

$$t_1$$
 is a value or $\exists t'_1. t_1 \rightarrow t'_1 \cdots \text{IH1}$
 t_2 is a value or $\exists t'_2. t_2 \rightarrow t'_2 \cdots \text{IH2}$

There are three cases to consider.

• t_1 is not a value: by IH1, there exists t'_1 such that

$$t_1 \rightarrow t_1'$$

and E-APP1 applies to t:

$$t_1 t_2 \rightarrow t_1' t_2$$

t₁ is a value and t₂ is not a value: by IH2, there exists t'₂ such that

$$t_2 \rightarrow t_2'$$

and E-APP2 applies to t:

$$t_1 t_2 \rightarrow t_1 t_2'$$

- Both t_1 and t_2 are values: because t_1 is well-typed as function abstraction($\vdash t_1 : T_{11} \to T_{12}$), t_1 has the form $\lambda x : T_{11}.t_{12}$ and so rule E-APPABS applies to t.
- $t = \text{if } t_1 t_2 t_3$: By typing rule T-IF

1

$$\frac{\Gamma \vdash t_1 : Bool \quad \Gamma \vdash t_2 : T \quad \Gamma \vdash t_3 : T}{\Gamma \vdash \texttt{if} \ t_1 \ t_2 \ t_3 : T}$$

and induction hypothesis, either t_1 is a value or else there is some t_1' such that $t_1 \to t_1'$.

2025/9/3

- t₁ is a value: t₁ is either true or false, in which either E-IFTRUE or E-IFFALSE applies to t.
- $t_1 \rightarrow t_1'$: E-IF applies to t and therefore $t \rightarrow$ if t_1' t_2 t_3 .

Lemma 2 (Weakening). If $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma[x \mapsto S] \vdash t : T$ for any S.

Proof. (exercise 1) Straightforward induction on t.

Lemma 3 (Preservation under Substitution). *If* $\Gamma[x \mapsto S] \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof. By induction on a derivation of the statement $\Gamma[x \mapsto S] \vdash t:T.$

• t=z: In this case, by typing rule T-VAR, we have

$$\Gamma[x \mapsto S](z) = T$$

There are two cases to consider:

• z = x: We have

$$\Gamma[x \mapsto S] \vdash x : S \qquad [x \mapsto s]x = s$$

and to show is $\Gamma \vdash s:S,$ which is among the assumptions of the lemma.

• $z \neq x$: In this case, we have

$$\Gamma[x \mapsto S] \vdash z : T \qquad [x \mapsto s]z = z$$

and to show is $\Gamma \vdash z : T$, which is immediate.

• $t = \lambda y : T_2.t_1$: In this case, we have

$$\Gamma[x \mapsto S][y \mapsto T_2] \vdash t_1 : T_1 \qquad T = T_2 \to T_1$$

where we assume that y is fresh (i.e., $y \not\in \{x\} \cup dom(\Gamma)$). Because typing holds for all permutation of the type environment, we also have

$$\Gamma[y \mapsto T_2][x \mapsto S] \vdash t_1 : T_1$$

By weakening the assumption $(\Gamma \vdash s : S)$ of this lemma, we have

$$\Gamma[y \mapsto T_2] \vdash s : S$$

Now, we apply the induction hypothesis and get

$$\Gamma[y \mapsto T_2] \vdash [x \mapsto s]t_1 : T_1$$

We apply T-ABS and have

$$\Gamma \vdash \lambda y : T_2.[x \mapsto s]t_1 : T_2 \to T_1$$

which, by the definition of the substitution, implies

$$\Gamma \vdash [x \mapsto s](\lambda y : T_2.t_1) : T_2 \to T_1$$

as desired.

• $t = t_1 t_2$: In this case, we have

$$\Gamma[x \mapsto S] \vdash t_1 : T_2 \to T_1, \quad \Gamma[x \mapsto S] \vdash t_2 : T_2, \quad T = T_1$$

By the induction hypothesis,

$$\Gamma[x\mapsto S]\vdash [x\mapsto s]t_1:T_2\to T_1,\quad \Gamma[x\mapsto S]\vdash [x\mapsto s]t_2:T_2,$$
 By T-APP,

$$\Gamma \vdash [x \mapsto s]t_1 \ [x \mapsto s]t_2 : T$$

which, by the definition of substitution, implies

$$\Gamma \vdash [x \mapsto s](t_1 \ t_2) : T$$

as desired.

• Other cases: (exercise 2)

Lemma 4 (Preservation). *If* $\Gamma \vdash t : T$ *and* $t \rightarrow t'$, *then* $\Gamma \vdash t' : T$.

Proof. By structural induction on t.

П

2

- t = x or $t = \lambda x : T.t_1$: Vacuously satisfied.
- $t = t_1 t_2$: In this case, we have

$$\Gamma \vdash t_1 : T_{11} \to T_{12} \qquad \Gamma \vdash t_2 : T_{11} \qquad T = T_{12}$$

Looking at the evaluation rules, we find that there are three possible cases for $t \to t'$:

■ E-App1: In this case $t' = t'_1 \ t_2$ where $t_1 \to t'_1$ and the induction hypothesis is

$$\Gamma \vdash t_1' : T_{11} \to T_{12}$$

Combining this with $\Gamma \vdash t_2:T_{11},$ we can apply T-APP to conclude that $\Gamma \vdash t':T$

- E-APP2: Similar.
- E-APPABS: In this case we have

$$t_1 = \lambda x : T_{11} \cdot t_{12}$$
 $t_2 = v_2$ $t' = [x \mapsto v_2]t_{12}$

We also have

$$\Gamma[x \mapsto T_{11}] \vdash t_{12} : T_{12}$$

and, by $\Gamma \vdash v_2 : T_{11}$ and the substitution lemma, we obtain

$$\Gamma \vdash t' : T_{12}$$

• Other cases: (exercise 3)

2025/9/3