Safety Proofs of Simple Type System

COSE2012 Programming Languages

Korea University

1. Simply Typed Lambda Calculus

Syntax We consider lambda calculus with boolean types and
conditional expressions:

t = =z variable
| Az:Tt abstraction
| ¢t application
| true| false boolean values
|

ifttt conditional expression

The values in this language are terms defined by the following
grammar:

v = true | false | Az : T.¢
Types include primitive boolean types and function types:

T:=DBool | T —T

Evaluation Rules
t1 — t]
—— E-Aprl
t1ta — tl to

to — tlg
— E-APpP2
v1 t2 = v1 by

E-APPAB
(/\{B : T.tlz) Vo — [{E — vz]tlz S

if true to ts — to E-IFTRUE

if falsets t3 — i3 E-IFFALSE

1 —th
if t1 to t3 — if t’l to ts

Typing Rules
I'(z)=T

I'kFax:T T-VaR

F[:Et—)Tﬂ}—tQITQ
I'FXx:Tite: Ty — T

T-ABS

F|_t1ZT11—>T12 F|_t2:Tll
FFtthCTm

T-App

I' F true : Bool T-TRUE

'+ false : Bool T-FALSE

I'Hti:Bool T'kte:T TkHt3:T
F}_iftltgtgiT

T-1F

2. Safety Proofs

Theorem 1 (Type Safety). Suppose t is a closed term. If -t : T,
then t does not get stuck during evaluation. Furthermore, if t
reaches a value v, then v is of the T type.

Proof. Immediate from Lemma 1 and Lemma 4. O

Lemma 1 (Progress). Suppose t is a closed term. If t is well-typed
(i.e., =t : T for some T), then either t is a value or there is some
t' witht — t':

Ft:T = tisavalueor3t'. t —t'

Proof. By structural induction on .

* ¢t € {true, false}: Immediate, since ¢ is a value.

* t = Az : T.t1: Immediate, since t is a value.

* t = x: Cannot occur (because t is closed).

* t = t1 t2: What we have to show in this case is as follows:

Ftite: T = 3t (tita) =t
First, by typing rule T-APP, we know that ¢; and ¢o are well-
typed:
Pty :Ti — T2 THte:Ti
F I_ tl t2 : T12

where T' = T2. By the induction hypothesis (IH), either ¢; is a
value or else it can make a step of evaluation, and likewise ¢2:

tiisavalueor 3t). t; — 7 ---TH1
to is a value or 3th. to — th, ---IH2
There are three cases to consider.
= ¢ is not a value: by IH1, there exists t} such that
t1 — t)
and E-APP1 applies to ¢:
t1to — th to
= ¢, is a value and ¢» is not a value: by IH2, there exists t/
such that
to — th
and E-APP2 applies to ¢:
tito — t1 th

» Both ¢; and ¢ are values: because t; is well-typed as func-
tion abstraction(k ¢; : 711 — Ti2), t1 has the form

Az : Th1.t12 and so rule E-APPABS applies to t.

* t = if t1 t2 t3: By typing rule T-IF
I'Fti:Bool T'kto:T T'Hitz:T
I'Fiftitats: T
and induction hypothesis, either ¢; is a value or else there is
some ¢} such that t; — ¢].

2025/9/3

= {1 is a value: ¢; is either true or false, in which either
E-IFTRUE or E-IFFALSE applies to t.
» t; — t7: BE-IF applies to ¢ and therefore ¢ — if ¢} t2 t3.

O

Lemma 2 (Weakening). If I' - ¢ : T and x ¢ dom(T"), then
Tz — S|k t:T foranyS.

Proof. (exercise 1) Straightforward induction on ¢. O

Lemma 3 (Preservation under Substitution). IfI'[z — S]F¢: T
andT' s : S, then - [z — s]t : T.

Proof. By induction on a derivation of the statement I'[z — S]
t:T.

* ¢ = z: In this case, by typing rule T-VAR, we have
Lz — S|(z) =T

There are two cases to consider:
= z = x: We have

Fz— S|kFa: S [+ sle=s

and to show is I' I s : .S, which is among the assumptions
of the lemma.
= z # x: In this case, we have

Fzw— Skz:T [z — s]lz==z2

and to show is I' F z : T, which is immediate.
* t = Ay : Ta.t1: In this case, we have

F[‘Z‘HS][yHTQ]FtlTl T=1T, =T,

where we assume that y is fresh (i.e., y & {z} U dom(T")). Be-
cause typing holds for all permutation of the type environment,
we also have

P[yHTg][x — S] Ft1:Th

By weakening the assumption (I' - s : S) of this lemma, we
have

MNy—TolkFs:S
Now, we apply the induction hypothesis and get
Pyw— o]k [z s]t1: Th
We apply T-ABS and have
PEAy:Tofz—sjti : To = Th
which, by the definition of the substitution, implies
Phlz—s)(Ay:Tetr) : To =T

as desired.
t = t1 to: In this case, we have

Plz— S|kt1:Te =T, Tz Slkte:Te, T=T

By the induction hypothesis,

Pz S|k [z s)ty : To = Th, Dz~ S|k [z~ s]tz : Tn,
By T-APp,

Pz slt[z—s]ta: T
which, by the definition of substitution, implies
'+ [CL‘ —> S](tl tQ) T

as desired.
* Other cases: (exercise 2)

Lemma 4 (Preservation). If[' -t :Tandt — t', thenT -t : T.

Proof. By structural induction on .

*t=wxort = Ax : T.t1: Vacuously satisfied.
* t = t1 to: In this case, we have

F|_t1ZT11—>T12 FI_tQZTH T:T12

Looking at the evaluation rules, we find that there are three
possible cases for t — ¢’
= E-APP1: In this case t' = t] t» where t; — ¢} and the
induction hypothesis is

F"t&ZTH*)TlQ

Combining this with I' - ¢5 : 711, we can apply T-APP to
conclude that ' ¢ : T

= E-APP2: Similar.

= E-APPABS: In this case we have

t1 = x : Ti1.t12 to = Vo t = [z — v2]t12
We also have
Tz — Ti] F tiz : The
and, by I" - vz : T4 and the substitution lemma, we obtain
C'Ht T

* Other cases: (exercise 3)

2025/9/3

