Homework 4
COSE212, Fall 2025

Hakjoo Oh

Problem 1 Consider the language ML~ from HW3:

P —- FE
E — O

| true|false
n
x

E+E|E-E|ExE|E/E

|

|

|

| E=E|E<E

| not E

| nil

| E:: FE

| EoE

| head F

| tail F

| isnil E

| if E then F else E
| letz=FEinkFE

| letrec f(z)=FE in F
|
|
|
|
|

letrec f(x1) = E7 and g(z2) = F3 in E

proc z E
EE
print E
E;FE

In OCaml datatype:

type program = exp

and

exp =
UNIT

TRUE

FALSE

CONST of int
VAR of var

unit

booleans

integers

variables
arithmetic
comparison
negation

empty list

list cons

list append

list head

list tail

checking empty list
if

let

recursion

mutual recursion
function definition
function application
print

sequence

ADD of exp * exp
SUB of exp * exp
MUL of exp * exp

|

|

[

| DIV of exp * exp
| EQUAL of exp * exp
| LESS of exp * exp
| NOT of exp
| NIL

| CONS of exp * exp

| APPEND of exp * exp

| HEAD of exp

| TAIL of exp

| ISNIL of exp

| IF of exp * exp * exp

| LET of var * exp * exp

| LETREC of var * var * exp * exp

| LETMREC of (var * var * exp) * (var * var * exp) * exp
| PROC of var * exp

| CALL of exp * exp

| PRINT of exp

| SEQ of exp * exp

and var = string

Types for the language are defined as follows:

type typ =
TyUnit
| TyInt
| TyBool
| TyFun of typ * typ
| TyList of typ
| TyVar of tyvar
and tyvar = string

Implement a sound type checker, typeof, for the language (the notion of
soundness is defined with respect to the dynamic semantics of the language
defined in HW3):

typeof : exp -> typ

which takes a program and returns its type if the program is well-typed. When
the program is ill-typed, typeof should raise an exception TypeError.

