
COSE212: Programming Languages

Lecture 9 — Design and Implementation of PLs

(5) Records, Pointers, and Garbage Collection

Hakjoo Oh
2024 Fall

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 1 / 26



Review: Our Language So Far

Syntax:
P → E

E → n
| x
| E + E
| iszero E
| if E then E else E
| let x = E in E
| proc x E
| E E
| E ⟨y⟩
| x := E
| E;E

Values:
Val = Z + Bool + Procedure

Procedure = Var × E × Env
ρ ∈ Env = Var → Loc

σ ∈ Mem = Loc → Val

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 2 / 26



Review: Semantics Rules
(Some rules omitted)

ρ, σ ⊢ n ⇒ n, σ ρ, σ ⊢ x ⇒ σ(ρ(x)), σ

ρ, σ0 ⊢ E1 ⇒ true, σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ if E1 then E2 else E3 ⇒ v, σ2

ρ, σ ⊢ proc x E ⇒ (x,E, ρ), σ

ρ, σ0 ⊢ E ⇒ v, σ1

ρ, σ0 ⊢ x := E ⇒ v, [ρ(x) 7→ v]σ1

ρ, σ0 ⊢ E1 ⇒ v1, σ1 [x 7→ l]ρ, [l 7→ v1]σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ let x = E1 in E2 ⇒ v, σ2
l ̸∈ Dom(σ1)

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ⊢ E ⇒ v′, σ3

ρ, σ0 ⊢ E1 E2 ⇒ v′, σ3
l ̸∈ Dom(σ2)

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 [x 7→ ρ(y)]ρ′, σ1 ⊢ E ⇒ v′, σ2

ρ, σ0 ⊢ E1 ⟨y⟩ ⇒ v′, σ2

ρ, σ0 ⊢ E1 ⇒ v1, σ1 ρ, σ1 ⊢ E2 ⇒ v2, σ2

ρ, σ0 ⊢ E1;E2 ⇒ v2, σ2

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 3 / 26



Plan

Extend the language with

records (structured data),

pointers, and

memory management.

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 4 / 26



Records (Structured Data)

A record (i.e., struct in C) is a collection of named memory locations.

let student = { id := 201812, age := 20 }

in student.id + student.age

let tree = { left := {}, v := 0, right := {} }

in tree.right := { left := {}, v := 2, right := 3 }

cf) Arrays are also collections of memory locations, where the names of
the locations are natural numbers.

let arr[3] = { 1, 2, 3 }

in arr[0] + arr[1] + arr[2]

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 5 / 26



Language Extension

Syntax:

E →
...

| {}

| { x := E1, y := E2 }

| E.x
| E1.x := E2

Values:

Val = Z + Bool + Procedure + Record
Procedure = Var × E × Env
r ∈ Record = Field → Loc

ρ ∈ Env = Var → Loc
σ ∈ Mem = Loc → Val

A record value r is a finite function (i.e., table):

{x1 7→ l1, . . . , xn 7→ ln}

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 6 / 26



Language Extension

Semantics:

ρ, σ ⊢ {} ⇒ ∅, σ

ρ, σ ⊢ E1 ⇒ v1, σ1 ρ, σ1 ⊢ E2 ⇒ v2, σ2 l1, l2 ̸∈ Dom(σ2)

ρ, σ ⊢ { x := E1, y := E2 } ⇒ {x 7→ l1, y 7→ l2}, [l1 7→ v1, l2 7→ v2]σ2

ρ, σ ⊢ E ⇒ r, σ1

ρ, σ ⊢ E.x ⇒ σ1(r(x)), σ1

ρ, σ ⊢ E1 ⇒ r, σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ ⊢ E1.x := E2 ⇒ v, [r(x) 7→ v]σ2

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 7 / 26



Pointers

Let memory locations to be first-class values.

let x = 1 in

let y = &x in

*y := *y + 2

let x = { left := {}, v := 1, right := {} } in

let y = &x.v

*y := *y + 2

let f = proc (x) (*x := *x + 1) in

let a = 1 in

(f &a); a

let f = proc (x) (&x) in

let p = (f 1) in

*p := 2

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 8 / 26



Language Extension

Syntax:

E →
...

| &x
| &E.x
| ∗E
| ∗E := E

Values:

Val = Z + Bool + Procedure + Record + Loc
Procedure = Var × E × Env
r ∈ Record = Field → Loc

ρ ∈ Env = Var → Loc
σ ∈ Mem = Loc → Val

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 9 / 26



Language Extension

Semantics:
ρ, σ ⊢ &x ⇒ ρ(x), σ

ρ, σ ⊢ E ⇒ r, σ1

ρ, σ ⊢ &E.x ⇒ r(x), σ1

ρ, σ ⊢ E ⇒ l, σ1

ρ, σ ⊢ ∗E ⇒ σ1(l), σ1

ρ, σ ⊢ E1 ⇒ l, σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ ⊢ ∗E1 := E2 ⇒ v, [l 7→ v]σ2

Note that the meaning of ∗E varies depending on its location.

When it is used as l-value, ∗E denotes the location that E refers to.

When it is used as r-value, ∗E denotes the value stored in the
location.

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 10 / 26



Need for Memory Management

New memory is allocated in let, call, and record expressions:

ρ, σ0 ⊢ E1 ⇒ v1, σ1 [x 7→ l]ρ, [l 7→ v1]σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ let x = E1 in E2 ⇒ v, σ2
l ̸∈ Dom(σ1)

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ⊢ E ⇒ v′, σ3

ρ, σ0 ⊢ E1 E2 ⇒ v′, σ3

l ̸∈ Dom(σ2)

ρ, σ ⊢ E1 ⇒ v1, σ1 ρ, σ1 ⊢ E2 ⇒ v2, σ2 l1, l2 ̸∈ Dom(σ2)

ρ, σ ⊢ { x := E1, y := E2 } ⇒ {x 7→ l1, y 7→ l2}, [l1 7→ v1, l2 7→ v2]σ2

Allocated memory is never deallocated during program execution,
eventually leading to memory exhaustion: e.g.,

let forever (x) = (forever x) in (forever 0)

We need to recycle memory that will no longer be used in the future.

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 11 / 26



Approaches to Memory Management

Two approaches that trade-off control and safety:
1 Manual memory mangement: manually deallocate every unused

memory locations.
▶ E.g., C, C++
▶ Pros: Fine control over the use of memory
▶ Cons: Burden of writing correct code is imposed on programmers

2 Runtime garbage collection: approximately find memory locations
that will not be used in the future and recycle them.

▶ E.g., Java, OCaml
▶ Pros: Memory safety
▶ Cons: Fine control is impossible / Runtime overhead

cf) Some recent programming languages like Rust1 achieve both safety
and control by using static type system.

1https://www.rust-lang.org
Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 12 / 26

https://www.rust-lang.org


Manual Memory Management

Extend the language with the deallocation expression:

E →
...

| free(E)

Semantics rule:

ρ, σ ⊢ E ⇒ l, σ1

ρ, σ ⊢ free(E) ⇒ l, σ1|Dom(σ1)\{l}
l ∈ Dom(σ1)

where

σ|X(l) =

{
σ(l) if l ∈ X

if l ̸∈ X

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 13 / 26



Manual Memory Management

Unfortunately, memory management is too difficult to do correctly,
leading to the three types of errors in C:

▶ Memory-leak: deallocate memory too late
▶ Double-free: deallocate memory twice
▶ Use-after-free: deallocate memory too early (dangling pointer)

These errors are common in practice, becoming significant sources of
security vulnerabilities.

Repo. #commits ML DF UAF Total *-overflow

linux 721,119 3,740 821 1,986 6,363 5,092
php 105,613 1,129 148 197 1,449 649
git 49,475 350 19 95 442 258
openssl 21,009 220 36 12 264 61

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 14 / 26



cf) Memory Errors in Industrial Practice

Programmers spend significant amount of time in fixing memory errors:

Can we automate the process?

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 15 / 26



cf) Automatic Memory-Error Fixing

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 16 / 26



cf) Automatic Memory-Error Fixing

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 17 / 26



cf) Automatic Memory-Error Fixing

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 18 / 26



cf) Automatic Memory-Error Fixing

MemFix: Static Analysis-Based Repair of Memory Deallocation Errors for C.
Junhee Lee, Seongjoon Hong, and Hakjoo Oh.
FSE 2018: ACM Symposium on the Foundations of Software Engineering.
http://prl.korea.ac.kr/~pronto/home/papers/fse18.pdf

SAVER: Scalable, Precise, and Safe Memory-Error Repair.
Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh.
ICSE 2020: 42nd International Conference on Software Engineering.
http://prl.korea.ac.kr/~pronto/home/papers/icse20.pdf

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 19 / 26

http://prl.korea.ac.kr/~pronto/home/papers/fse18.pdf
http://prl.korea.ac.kr/~pronto/home/papers/icse20.pdf


Automatic Memory Management (Garbage Collection)

1 When no more memory is available, pause the program execution.

2 Collect all the memory locations that will not be used anymore.

3 Remove those memory locations in the current memory.

E.g.,

let f = proc (x) (x+1) in

let a = f 0 in

a + 1

The environment and memory right before evaluating a+1:

ρ = {f 7→ l1, a 7→ l3}, σ = {l1 7→ (x, x+1, ∅), l2 7→ 0, l3 7→ 1}

After garbage collection:

ρ = {f 7→ l1, a 7→ l3}, σ = {l3 7→ 1}

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 20 / 26



Automatic Memory Management is Undecidable

A bad news: exactly identifying memory locations that will be used in
the future is impossible.

Otherwise, we can solve the Halting problem.
▶ We cannot write a program H(p) that returns true iff program p

terminates.

Suppose we have an algorithm G that can exactly find the memory
locations that will be used in the rest program execution.

Then, we can construct H(p) as follows:
1 H takes p and execute the following program:

let x = malloc() in p; x

where x is a variable not used in p.
2 Invoke the procedure G right before evaluating p, and find the location

set S that will be used in the future.
⋆ When S contains the location stored in x, p terminates.
⋆ Otherwise, p does not terminate.

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 21 / 26



Garbage Collection (GC) in Practice

1 When no more memory is available, pause the program execution.

2 Collect memory locations that are not reachable from the current
environment.

3 Remove those memory locations in the current memory.

let f = proc (x) (x+1) in

let a = f 0 in

a + 1

The environment and memory right before evaluating a+1:

ρ = {f 7→ l1, a 7→ l3}, σ = {l1 7→ (x, x+1, ∅), l2 7→ 0, l3 7→ 1}

After garbage collection:

ρ = {f 7→ l1, a 7→ l3}, σ = {l1 7→ (x, x+1, ∅), l3 7→ 1}

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 22 / 26



More Example

Environment and memory before GC:

ρ =

[
x 7→ l1
y 7→ l2

]
σ =



l1 7→ 0
l2 7→ {a 7→ l3, b 7→ l1}
l3 7→ l4
l4 7→ (x,E, [z 7→ l5])
l5 7→ 0
l6 7→ l7
l7 7→ l6


Memory after GC:

GC(ρ, σ) =


l1 7→ 0
l2 7→ {a 7→ l3, b 7→ l4}
l3 7→ l4
l4 7→ (x,E, [z 7→ l5])
l5 7→ 0


Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 23 / 26



Garbage Collection (GC): Formal Definition

Let reach(ρ, σ) be the set of locations in σ that are reachable from
the entries in ρ. It is the smallest set that satisfies the rules:

ρ(x) ∈ reach(ρ, σ)
x ∈ Dom(ρ)

l ∈ reach(ρ, σ) σ(l) = l′

l′ ∈ reach(ρ, σ)

l ∈ reach(ρ, σ) σ(l) = {x1 7→ l1, . . . , xn 7→ ln}
{l1, . . . , ln} ⊆ reach(ρ, σ)

l ∈ reach(ρ, σ) σ(l) = (x,E, ρ′)

reach(ρ′, σ) ⊆ reach(ρ, σ)

Let GC be the garbage-collecting procedure:

GC(ρ, σ) = σ|reach(ρ,σ)

Before evaluating an expression, perform GC:

ρ,GC(ρ, σ) ⊢ E ⇒ v, σ′

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 24 / 26



Safe but Incomplete

GC performs memory management in an approximate but safe way.

Theorem (Safety of GC)

In the inference of (ρ, σ ⊢ E ⇒ v, σ′), the set of used (read or written)
locations in σ is included in reach(ρ, σ).

Proof.

By induction on E.

However, some locations that will not be used may be reachable.

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 25 / 26



Summary

The final programming language:

expressions, procedures, recursion,

states with explicit/implicit references

parameter-passing variations

records, pointers, and automatic garbage collection

Hakjoo Oh COSE212 2024 Fall, Lecture 9 August 30, 2024 26 / 26


