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Review: Our Language So Far

Our language has expressions and procedures.

Syntax

P → E

E → n
| x
| E + E
| E − E
| iszero E
| if E then E else E
| let x = E in E
| read

| letrec f(x) = E in E
| proc x E
| E E
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Review: Our Language So Far

Semantics

ρ ⊢ n ⇒ n ρ ⊢ x ⇒ ρ(x)

ρ ⊢ E1 ⇒ n1 ρ ⊢ E2 ⇒ n2

ρ ⊢ E1 + E2 ⇒ n1 + n2

ρ ⊢ E ⇒ 0

ρ ⊢ iszero E ⇒ true

ρ ⊢ E ⇒ n

ρ ⊢ iszero E ⇒ false
n ̸= 0

ρ ⊢ read ⇒ n

ρ ⊢ E1 ⇒ true ρ ⊢ E2 ⇒ v

ρ ⊢ if E1 then E2 else E3 ⇒ v

ρ ⊢ E1 ⇒ false ρ ⊢ E3 ⇒ v

ρ ⊢ if E1 then E2 else E3 ⇒ v

ρ ⊢ E1 ⇒ v1 [x 7→ v1]ρ ⊢ E2 ⇒ v

ρ ⊢ let x = E1 in E2 ⇒ v

[f 7→ (f, x, E1, ρ)]ρ ⊢ E2 ⇒ v

ρ ⊢ letrec f(x) = E1 in E2 ⇒ v

ρ ⊢ proc x E ⇒ (x,E, ρ)

ρ ⊢ E1 ⇒ (x,E, ρ′) ρ ⊢ E2 ⇒ v [x 7→ v]ρ′ ⊢ E ⇒ v′

ρ ⊢ E1 E2 ⇒ v′

ρ ⊢ E1 ⇒ (f, x, E, ρ′) ρ ⊢ E2 ⇒ v [x 7→ v, f 7→ (f, x, E, ρ′)]ρ′ ⊢ E ⇒ v′

ρ ⊢ E1 E2 ⇒ v′
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This Lecture: Adding States to the Language

So far, our language only had the values produced by computation.

But computation also has effects: it may change the state of memory.

We will extend the language to support computational effects:
▶ Syntax for creating and using memory locations
▶ Semantics for manipulating memory states
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Motivating Example

How can we compute the number of times f has been called?

let f = proc (x) (x)

in (f (f 1))

Does the following program work?

let counter = 0

in let f = proc (x) (let counter = counter + 1

in x)

in let a = (f (f 1))

in counter

The binding of counter is local. We need global effects.

Effects are implemented by introducing memory (store) and locations
(reference).
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Two Approaches

Programming languages support references explicitly or implicitly.

Languages with explicit references provide a clear account of
allocation, dereference, and mutation of memory cells.

▶ e.g., OCaml, F#

In languages with implicit references, references are built-in.
References are not explicitly manipulated.

▶ e.g., C and Java.
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A Language with Explicit References

P → E

E → n | x
| E + E | E − E
| iszero E | if E then E else E
| let x = E in E
| proc x E | E E
| ref E
| ! E
| E := E
| E;E

ref E allocates a new location, store the value of E in it, and returns it.

! E returns the contents of the location that E refers to.

E1 := E2 changes the contents of the location (E1) by the value of E2.

E1;E2 executes E1 and then E2 while accumulating effects.
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Example 1

let counter = ref 0

in let f = proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = let counter = ref 0

in proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = proc (x) (let counter = ref 0

in (counter := !counter + 1; !counter))

in let a = (f 0)

in let b = (f 0)

in (a - b)
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Example 2

We can make chains of references:

let x = ref (ref 0)

in (!x := 11; !(!x))
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Semantics

Memory is modeled as a finite map from locations to values:

Val = Z + Bool + Procedure+Loc
Procedure = Var × E × Env
ρ ∈ Env = Var → Val

σ ∈ Mem = Loc → Val

Semantics rules additionally describe memory effects:

ρ, σ ⊢ E ⇒ v, σ′

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 10 / 29



Semantics
Existing rules are enriched with memory effects:

ρ, σ ⊢ n ⇒ n, σ ρ, σ ⊢ x ⇒ ρ(x), σ

ρ, σ0 ⊢ E1 ⇒ n1, σ1 ρ, σ1 ⊢ E2 ⇒ n2, σ2

ρ, σ0 ⊢ E1 + E2 ⇒ n1 + n2, σ2

ρ, σ0 ⊢ E ⇒ 0, σ1

ρ, σ0 ⊢ iszero E ⇒ true, σ1

ρ, σ0 ⊢ E ⇒ n, σ1

ρ, σ0 ⊢ iszero E ⇒ false, σ1
n ̸= 0

ρ, σ0 ⊢ E1 ⇒ true, σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ if E1 then E2 else E3 ⇒ v, σ2

ρ, σ0 ⊢ E1 ⇒ false, σ1 ρ, σ1 ⊢ E3 ⇒ v, σ2

ρ, σ0 ⊢ if E1 then E2 else E3 ⇒ v, σ2

ρ, σ0 ⊢ E1 ⇒ v1, σ1 [x 7→ v1]ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ let x = E1 in E2 ⇒ v, σ2

ρ, σ ⊢ proc x E ⇒ (x,E, ρ), σ

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2 [x 7→ v]ρ′, σ2 ⊢ E ⇒ v′, σ3

ρ, σ0 ⊢ E1 E2 ⇒ v′, σ3
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Semantics

Rules for new constructs:

ρ, σ0 ⊢ E ⇒ v, σ1

ρ, σ0 ⊢ ref E ⇒ l, [l 7→ v]σ1
l ̸∈ Dom(σ1)

ρ, σ0 ⊢ E ⇒ l, σ1

ρ, σ0 ⊢ ! E ⇒ σ1(l), σ1

ρ, σ0 ⊢ E1 ⇒ l, σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ E1 := E2 ⇒ v, [l 7→ v]σ2

ρ, σ0 ⊢ E1 ⇒ v1, σ1 ρ, σ1 ⊢ E2 ⇒ v2, σ2

ρ, σ0 ⊢ E1;E2 ⇒ v2, σ2
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Example

ρ, σ0 ⊢ let x = ref (ref 0) in (!x := 11; !(!x)) ⇒
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Exercise

Extend the language with recursive procedures:

P → E

E → n | x
| E + E | E − E
| iszero E | if E then E else E
| let x = E in E
| letrec f(x) = E in E
| proc x E | E E
| ref E
| ! E
| E := E
| E;E
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Exercise (Continued)

Domain:

Val = Z + Bool + Procedure+Loc
Procedure = Var × E × Env
ρ ∈ Env = Var → Val

σ ∈ Mem = Loc → Val

Semantics rules:

ρ, σ0 ⊢ letrec f(x) = E1 in E2 ⇒

ρ, σ0 ⊢ E1 E2 ⇒
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A Language with Implicit References

P → E

E → n | x
| E + E | E − E
| iszero E | if E then E else E
| let x = E in E
| proc x E | E E
| x := E
| E;E

In this design, every variable denotes a reference and is mutable.

x := E changes the contents of x by the value of E.
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Examples

Computing the number of times f has been called:

let counter = 0

in let f = proc (x) (counter := counter + 1; counter)

in let a = (f 0)

in let b = (f 0)

in (a-b)

let f = let counter = 0

in proc (x) (counter := counter + 1; counter)

in let a = (f 0)

in let b = (f 0)

in (a-b)

let f = proc (x) (let counter = 0

in (counter := counter + 1; counter))

in let a = (f 0)

in let b = (f 0)

in (a-b)
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Exercise

What is the result of the program?

let f = proc (x)

proc (y)

(x := x + 1; x - y)

in ((f 44) 33)
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Semantics

References are no longer values and every variable denotes a reference:

Val = Z + Bool + Procedure
Procedure = Var × E × Env
ρ ∈ Env = Var → Loc

σ ∈ Mem = Loc → Val
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Semantics

ρ, σ ⊢ n ⇒ n, σ ρ, σ ⊢ x ⇒ σ(ρ(x)), σ

ρ, σ0 ⊢ E1 ⇒ n1, σ1 ρ, σ1 ⊢ E2 ⇒ n2, σ2

ρ, σ0 ⊢ E1 + E2 ⇒ n1 + n2, σ2

ρ, σ0 ⊢ E ⇒ 0, σ1

ρ, σ0 ⊢ iszero E ⇒ true, σ1

ρ, σ0 ⊢ E1 ⇒ true, σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ if E1 then E2 else E3 ⇒ v, σ2

ρ, σ ⊢ proc x E ⇒ (x,E, ρ), σ

ρ, σ0 ⊢ E ⇒ v, σ1

ρ, σ0 ⊢ x := E ⇒ v, [ρ(x) 7→ v]σ1

ρ, σ0 ⊢ E1 ⇒ v1, σ1 [x 7→ l]ρ, [l 7→ v1]σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ let x = E1 in E2 ⇒ v, σ2
l ̸∈ Dom(σ1)

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ⊢ E ⇒ v′, σ3

ρ, σ0 ⊢ E1 E2 ⇒ v′, σ3
l ̸∈ Dom(σ2)

ρ, σ0 ⊢ E1 ⇒ v1, σ1 ρ, σ1 ⊢ E2 ⇒ v2, σ2

ρ, σ0 ⊢ E1;E2 ⇒ v2, σ2
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Example

let f = let count = 0

in proc (x) (count := count + 1; count)

in let a = (f 0)

in let b = (f 0)

in a - b
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Exercise

Extend the language with recursive procedures:

P → E

E → n | x
| E + E | E − E
| iszero E | if E then E else E
| let x = E in E
| letrec f(x) = E in E
| proc x E | E E
| x := E
| E;E
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Exercise (Continued)

Domain:
Val = Z + Bool + Procedure

Procedure = Var × E × Env
ρ ∈ Env = Var → Loc

σ ∈ Mem = Loc → Val

Semantics rules:

ρ, σ0 ⊢ letrec f(x) = E1 in E2 ⇒

ρ, σ0 ⊢ E1 E2 ⇒
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Parameter-Passing Variations

Our current strategy of calling a procedure is call-by-value. The
formal parameter refers to a new location containing the value of the
actual parameter:

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ⊢ E ⇒ v′, σ3

ρ, σ0 ⊢ E1 E2 ⇒ v′, σ3
l ̸∈ Dom(σ2)

The most commonly used form of parameter-passing.

For example, the assignment to x has no effect on the contents of a:

let p = proc (x) (x := 4)

in let a = 3

in ((p a); a)

Under call-by-reference, the assignment changes the value of a after
the call.
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Call-By-Reference Parameter-Passing

The location of the caller’s variable is passed, rather than the contents of
the variable.

Extend the syntax:

E →
...

| E E
| E ⟨y⟩

Extend the semantics:

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 [x 7→ ρ(y)]ρ′, σ1 ⊢ E ⇒ v′, σ2

ρ, σ0 ⊢ E1 ⟨y⟩ ⇒ v′, σ2

What is the benefit of call-by-reference compared to call-by-value?
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Examples

let p = proc (x) (x := 4)

in let a = 3

in ((p <a>); a)

let f = proc (x) (x := 44)

in let g = proc (y) (f <y>)

in let z = 55

in ((g <z>); z)

let swap = proc (x) proc (y)

let temp = x

in (x := y; y := temp)

in let a = 33

in let b = 44

in (((swap <a>) <b>); (a-b))
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Variable Aliasing

More than one call-by-reference parameter may refer to the same location:

let b = 3

in let p = proc (x) proc (y)

(x := 4; y)

in ((p <b>) <b>)

A variable aliasing is created: x and y refer to the same location

With aliasing, reasoning about program behavior is very difficult,
because an assignment to one variable may change the value of
another.
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Lazy Evaluation

So far all the parameter-passing strategies are eager in that they
always evaluate the actual parameter before calling a procedure.

In eager evaluation, procedure arguments are completely evaluated
before passing them to the procedure.

On the other hand, lazy evaluation delays the evaluation of arguments
until it is actually needed. If the procedure body never uses the
parameter, it will never be evaluated.

Lazy evaluation potentially avoids non-termination:

letrec infinite(x) = (infinite x)

in let f = proc (x) (1)

in (f (infinite 0))

Lazy evaluation is popular in functional languages, because lazy
evaluation makes it difficult to determine the order of evaluation,
which is essential to understanding a program with effects.
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Summary

Our language is now (somewhat) realistic:

expressions, procedures, recursion,

states with explicit/implicit references

parameter-passing variations
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