COSE212: Programming Languages

Lecture 8 — Design and Implementation of PLs
(4) States

Hakjoo Oh
2024 Fall

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 1/29

Review: Our Language So Far

Our language has expressions and procedures.

P
E

— FE
— n
| =
|
|
| iszero E
| if E then E else E
| letxz=FEin E
| read
| 1letrec f(z) =E in E
| procxz E
| EE

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 2/29

Review: Our Language So Far

Semantics

ptH E1 = ny pt Ez = na
pE E1+4+ E2 = ni +na
pHE=0 pHE=mn £0
p F iszero E = true p - iszero E = false "

pFn=mn ptFx= p(x)

pbread = n
pt E1 = true pt E2 = v

p+ E1 = false pt E3=v
pt if E; then E3 else E3 = v

p - if E; then E3 else E3 = v

pkE1 = v [— vi]pt+ E2 = v [f = (fsz,E1,p)lpt+ E2 = v
pkletxz = FE; in E2 = v p b letrec f(x) = Ey in E2 = v

p F proc ¢ E = (, E, p)
pt E1 = (z,E,p’) pHE2=wv [— v]p' - E = v/
pF E1 Ez = v
prE1= (f,z,E,p') p-Ez=v [z—v,f—(fiz,Ep)p'+E=
pt E1 Ez = v

Hakjoo Oh COSE212 2024 Fall, Lecture 8

August 30, 2024 3/29

This Lecture: Adding States to the Language

@ So far, our language only had the values produced by computation.

@ But computation also has effects: it may change the state of memory.
@ We will extend the language to support computational effects:

» Syntax for creating and using memory locations
» Semantics for manipulating memory states

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 4/29

Motivating Example

@ How can we compute the number of times f has been called?

let f = proc (x) (x)
in (f (£ 1))

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 5/29

Motivating Example

@ How can we compute the number of times f has been called?

let f = proc (x) (x)

in (£ (£ 1))
@ Does the following program work?

let counter = 0

in let f = proc (x) (let counter = counter + 1

in x)
in let a = (f (£ 1))
in counter

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 5/29

Motivating Example

@ How can we compute the number of times f has been called?
let £ = proc (x) (x)
in (£ (£ 1))

@ Does the following program work?

let counter = 0
in let f = proc (x) (let counter = counter + 1
in x)
in let a = (£ (£ 1))
in counter

@ The binding of counter is local. We need global effects.
o Effects are implemented by introducing memory (store) and locations

(reference).

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 5/29

Two Approaches

Programming languages support references explicitly or implicitly.

@ Languages with explicit references provide a clear account of
allocation, dereference, and mutation of memory cells.

» e.g., OCaml, F#

@ In languages with implicit references, references are built-in.
References are not explicitly manipulated.

» e.g., C and Java.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 6/29

A Language with Explicit References
P — FE
E — n|x

| E+E|E—E

| iszero E | if E then FE else E

| letz=FEinE

| procx E|EE

| ref E

| 'E

| E:=FE

| E;E

@ ref F allocates a new location, store the value of F in it, and returns it.
@ ! FE returns the contents of the location that E refers to.

@ FE; := E5 changes the contents of the location (E4) by the value of Es.
@ FE;; E5 executes FE4 and then E5 while accumulating effects.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 7/29

Example 1

@ let counter = ref 0
in let f = proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)
in let b = (f 0)
in (a - b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 8/29

Example 1

@ let counter = ref 0
in let f = proc (x) (counter :
in let a = (f 0)
in let b = (£ 0)

lcounter + 1; !counter)

in (a - b)
@ let £ = let counter = ref O
in proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)
in let b = (f 0)
in (a - b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 8/29

Example 1

@ let counter = ref 0
in let f = proc (x) (counter :
in let a = (f 0)
in let b = (£ 0)

lcounter + 1; !counter)

in (a - b)
@ let £ = let counter = ref O
in proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)
in let b = (f 0)
in (a - b)
@ let £ = proc (x) (let counter = ref 0
in (counter := !counter + 1; !counter))

in let a = (f 0)
in let b = (f 0)
in (a - b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 8/29

Example 2
We can make chains of references:

let x = ref (ref 0)
in ('x := 11; '('x))

Hakjoo Oh COSE212 2024 Fall, Lecture 8

Semantics

Memory is modeled as a finite map from locations to values:

Val
Procedure
p € Env
o € Mem

7 + Bool + Procedure-+ Loc
Var x E X Env

Var — Val

Loc — Val

Semantics rules additionally describe memory effects:

p,o-E = v,0'

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024

10/29

Semantics

Existing rules are enriched with memory effects:

p,oF-n=n,o pyotx= p(x),o

p,o0 - E1 = ni,01 p,o1 - E2 = n2,02
p,oo - E1 4+ E2 = n1 + n2,02

p,oo-E = 0,01

p,oo - E = n,o1
p, 00 - iszero E = true,o1

0
p, oo b iszero E = false, o1 n#

p,00 - E1 = true,o1 p,o1 - Ea = v,02
p,o00 - if E1 then E3 else E3 = v,02

p,o0 - E1 = false,o1 p,o1+ E3 = v,02
p,o00 b if E1 then E3 else E3 = v,02

p,o0 - E1 = v1,01 [— vi]p, o1 F E2 = v,02

p,o0 b let x = E1 in E2 = v,02

p,o Fprocx E = (z, E,p),o

p,crol—E1:>(:l:,E,p'),a'1 p;o1 - E2 = v,02

[x — v]p',o2 - E = v/,03
p,o0 - E1 E2 = v',03

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 11/29

Semantics
Rules for new constructs:

p,oo - E = v,01
p,00 Fref E=1,[l — v]o

l & Dom(o1)

p,oo-E=1,0q
pyoo ! E = o1(l),01

p,oo - E1 = 1,01 p,o01 + Ey = v,02
P00 F FEq := Es = v, [l I—)’U]O’2

psoo - E1 = v1,01 p,o1 = Ey = v2,02
psoo = Ey; Es = va,02

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 12/29

Example

p,oo - let x = ref (ref 0) in (!x := 11; ! (!x)) =

Hakjoo Oh COSE212 2024 Fall, Lecture 8

Exercise

Extend the language with recursive procedures:

P — FE
E — n|z

E+E|E—E

iszero E | if E then E else E
letz=F in FE

letrec f(z) = F in E
procx E | E E

ref E

'E

E:=F

E;FE

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024

14 /29

Exercise (Continued)

@ Domain:

Val
Procedure

p € Env
o € Mem

@ Semantics rules:

Z + Bool + Procedure+ Loc
Var x E X Env

Var — Val

Loc — Val

p, o9 k- letrec f(x) = Eq in Ep =

p,o0 - FE1 Ey =

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024

15/29

A Language with Implicit References

P — FE
E — n|x

| E+E|E-E

| iszero E | if E then FE else E

| letz=FEinE

| procx E|EE

| x:=F

| E;E

@ In this design, every variable denotes a reference and is mutable.

e x := E changes the contents of x by the value of F.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 16 /29

Examples

Computing the number of times £ has been called:

@ let counter = 0
in let f = proc (x) (counter := counter + 1; counter)
in let a = (£ 0)
in let b = (£ 0)
in (a-b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 17 /29

Examples

Computing the number of times £ has been called:

@ let counter = 0
in let f = proc (x) (counter := counter + 1; counter)
in let a = (£ 0)
in let b = (£ 0)

in (a-b)
@ let f = let counter = 0
in proc (x) (counter := counter + 1; counter)

in let a = (f 0)
in let b = (f 0)
in (a-b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 17 /29

Examples

Computing the number of times £ has been called:

@ let counter = 0
in let f = proc (x) (counter := counter + 1; counter)
in let a = (f 0)
in let b = (£ 0)
in (a-b)
@ let f = let counter = 0
in proc (x) (counter :
in let a = (£ 0)
in let b = (f 0)
in (a-b)
@ let f = proc (x) (let counter = 0
in (counter := counter + 1; counter))

counter + 1; counter)

in let a = (f 0)
in let b = (£ 0)
in (a-b)
August 30, 2024 17 /29

Exercise

What is the result of the program?

let £ = proc (%)
proc (y)

(x :=x+1; x - y)
in ((f 44) 33)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 18/29

Semantics

References are no longer values and every variable denotes a reference:

Val = 7 + Bool + Procedure
Procedure = Var X E X Env
p€ Env = Var — Loc
o € Mem = Loc— Val

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 19 /29

Semantics

p,obEn=n,o p,o -z = o(p(x)),o

psoo - E1 = ni,01 ps01 = E2 = n2,02 pyoo - E = 0,01

p,oo - E1 4+ E2 = ny + n2,o02 p, 00 - iszero E = true,o1

p,o0 - E1 = true,o1 p,o1+ E2 = v,02
p,o0 - if E;1 then E3 else E3 = v, 02

p,o0 - E = v,01
p,o Fprocx E = (x,E,p),o p,o0 Fx:=E = v, [p(x) — v]oy

p,o0+ E1 = v1,01 [— Up, [l — vi]o1 F E2 = v,02

I & D
p,o0 - let € = Eq in E2 = v,02 ¢ Dom(c1)
psoo - E1 = (z,E,p'),01 p,o1 - Ex = v,02
x — lp/,[l — v]lo2 - E = v',03
[e’ []) I & Dom(oa)

p,o0 - E1 E2 = v',03

p,oo - E1 = vi,01 p,01 - E2 = v2,02

ps00 - E15 E2 = v2,02

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 20/29

Example

let £ = let count = 0
in proc (x) (count := count + 1; count)

in let a = (f 0)
in let b = (f 0)
ina -b

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 21/29

Exercise

Extend the language with recursive procedures:

P — FE
E — n|z

E+E|E—E

iszero E | if E then E else E
letx =F in E

letrec f(z) = F in E
procx E | E E

r:=F

E;FE

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024

22 /29

Exercise (Continued)

@ Domain:
Val

Procedure
p € Env
o € Mem

@ Semantics rules:

7, + Bool + Procedure
Var x E X Env

Var — Loc

Loc — Val

p, o9 F letrec f(x) = Eq in E2 =

p,o0 - E1 E; =

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024

23/29

Parameter-Passing Variations

@ Our current strategy of calling a procedure is call-by-value. The
formal parameter refers to a new location containing the value of the
actual parameter:

psoo - E1 = (z,E,p'),01 p,o1 - Es = v,05
[t —l]p,[l = v]oa - E = v, 03
p,oo - E1 Ex = v, 03

l & Dom(o2)

@ The most commonly used form of parameter-passing.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 24/29

Parameter-Passing Variations

@ Our current strategy of calling a procedure is call-by-value. The
formal parameter refers to a new location containing the value of the
actual parameter:

psoo - E1 = (z,E,p'),01 p,o1 - Es = v,05

[t — l]p,[l =» v]loa F E = v/ 03

l € Dom(o
p,oo - E1 Ex = v, 03 ¢ (o2)

@ The most commonly used form of parameter-passing.
@ For example, the assignment to x has no effect on the contents of a:

let p = proc (x) (x := 4)
in let a = 3
in ((p a); a)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 24/29

Parameter-Passing Variations

@ Our current strategy of calling a procedure is call-by-value. The
formal parameter refers to a new location containing the value of the
actual parameter:

psoo - E1 = (z,E,p'),01 p,o1 - Es = v,05

[t — l]p,[l =» v]loa F E = v/ 03

l € Dom(o
p,oo - E1 Ex = v, 03 ¢ (o2)

@ The most commonly used form of parameter-passing.
@ For example, the assignment to x has no effect on the contents of a:
let p = proc (x) (x := 4)
in let a = 3
in ((p a); a)
@ Under call-by-reference, the assignment changes the value of a after
the call.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 24/29

Call-By-Reference Parameter-Passing

The location of the caller’s variable is passed, rather than the contents of
the variable.

o Extend the syntax:

E

E —
|
| (y)

E
E
@ Extend the semantics:

psoo - E1 = (z,E, p'), 01 [x = p(y)]p'so1F E = v/ 02

p,o0 F Eq (y) = v, 02

What is the benefit of call-by-reference compared to call-by-value?

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 25/29

Examples
@ let p = proc (x) (x := 4)

in let a = 3
in ((p <a>); a)

Hakjoo Oh COSE212 2024 Fall, Lecture 8

Examples

@ let p = proc (x) (x := 4)
in let a = 3
in ((p <a>); a)
@ let f = proc (x) (x := 44)
in let g = proc (y) (£ <y>)
in let z = 55
in ((g <2>); z2)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 26/29

Examples

@ let p = proc (x) (x := 4)
in let a = 3
in ((p <a>); a)
@ let f = proc (x) (x := 44)
in let g = proc (y) (£ <y>)
in let z = 55
in ((g <z>); 2z)
@ let swap = proc (x) proc (y)
let temp = x
in (x :=y; y := temp)
in let a = 33
in let b = 44
in (((swap <a>)); (a-b))

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 26 /29

Variable Aliasing

More than one call-by-reference parameter may refer to the same location:

let b =3
in let p = proc (x) proc (y)
(x = 4; y)
in ((p))

@ A variable aliasing is created: x and y refer to the same location

o With aliasing, reasoning about program behavior is very difficult,
because an assignment to one variable may change the value of
another.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 27/29

Lazy Evaluation

@ So far all the parameter-passing strategies are eager in that they
always evaluate the actual parameter before calling a procedure.

@ In eager evaluation, procedure arguments are completely evaluated
before passing them to the procedure.

@ On the other hand, lazy evaluation delays the evaluation of arguments
until it is actually needed. If the procedure body never uses the
parameter, it will never be evaluated.

@ Lazy evaluation potentially avoids non-termination:
letrec infinite(x) = (infinite x)
in let f = proc (x) (1)

in (£ (infinite 0))
@ Lazy evaluation is popular in functional languages, because lazy

evaluation makes it difficult to determine the order of evaluation,
which is essential to understanding a program with effects.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 28/29

Summary

Our language is now (somewhat) realistic:
@ expressions, procedures, recursion,
@ states with explicit/implicit references

@ parameter-passing variations

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 29/29

