
COSE212: Programming Languages

Lecture 8 — Design and Implementation of PLs

(4) States

Hakjoo Oh
2024 Fall

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 1 / 29

Review: Our Language So Far

Our language has expressions and procedures.

Syntax

P → E

E → n
| x
| E + E
| E − E
| iszero E
| if E then E else E
| let x = E in E
| read

| letrec f(x) = E in E
| proc x E
| E E

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 2 / 29

Review: Our Language So Far

Semantics

ρ ⊢ n ⇒ n ρ ⊢ x ⇒ ρ(x)

ρ ⊢ E1 ⇒ n1 ρ ⊢ E2 ⇒ n2

ρ ⊢ E1 + E2 ⇒ n1 + n2

ρ ⊢ E ⇒ 0

ρ ⊢ iszero E ⇒ true

ρ ⊢ E ⇒ n

ρ ⊢ iszero E ⇒ false
n ̸= 0

ρ ⊢ read ⇒ n

ρ ⊢ E1 ⇒ true ρ ⊢ E2 ⇒ v

ρ ⊢ if E1 then E2 else E3 ⇒ v

ρ ⊢ E1 ⇒ false ρ ⊢ E3 ⇒ v

ρ ⊢ if E1 then E2 else E3 ⇒ v

ρ ⊢ E1 ⇒ v1 [x 7→ v1]ρ ⊢ E2 ⇒ v

ρ ⊢ let x = E1 in E2 ⇒ v

[f 7→ (f, x, E1, ρ)]ρ ⊢ E2 ⇒ v

ρ ⊢ letrec f(x) = E1 in E2 ⇒ v

ρ ⊢ proc x E ⇒ (x,E, ρ)

ρ ⊢ E1 ⇒ (x,E, ρ′) ρ ⊢ E2 ⇒ v [x 7→ v]ρ′ ⊢ E ⇒ v′

ρ ⊢ E1 E2 ⇒ v′

ρ ⊢ E1 ⇒ (f, x, E, ρ′) ρ ⊢ E2 ⇒ v [x 7→ v, f 7→ (f, x, E, ρ′)]ρ′ ⊢ E ⇒ v′

ρ ⊢ E1 E2 ⇒ v′

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 3 / 29

This Lecture: Adding States to the Language

So far, our language only had the values produced by computation.

But computation also has effects: it may change the state of memory.

We will extend the language to support computational effects:
▶ Syntax for creating and using memory locations
▶ Semantics for manipulating memory states

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 4 / 29

Motivating Example

How can we compute the number of times f has been called?

let f = proc (x) (x)

in (f (f 1))

Does the following program work?

let counter = 0

in let f = proc (x) (let counter = counter + 1

in x)

in let a = (f (f 1))

in counter

The binding of counter is local. We need global effects.

Effects are implemented by introducing memory (store) and locations
(reference).

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 5 / 29

Motivating Example

How can we compute the number of times f has been called?

let f = proc (x) (x)

in (f (f 1))

Does the following program work?

let counter = 0

in let f = proc (x) (let counter = counter + 1

in x)

in let a = (f (f 1))

in counter

The binding of counter is local. We need global effects.

Effects are implemented by introducing memory (store) and locations
(reference).

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 5 / 29

Motivating Example

How can we compute the number of times f has been called?

let f = proc (x) (x)

in (f (f 1))

Does the following program work?

let counter = 0

in let f = proc (x) (let counter = counter + 1

in x)

in let a = (f (f 1))

in counter

The binding of counter is local. We need global effects.

Effects are implemented by introducing memory (store) and locations
(reference).

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 5 / 29

Two Approaches

Programming languages support references explicitly or implicitly.

Languages with explicit references provide a clear account of
allocation, dereference, and mutation of memory cells.

▶ e.g., OCaml, F#

In languages with implicit references, references are built-in.
References are not explicitly manipulated.

▶ e.g., C and Java.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 6 / 29

A Language with Explicit References

P → E

E → n | x
| E + E | E − E
| iszero E | if E then E else E
| let x = E in E
| proc x E | E E
| ref E
| ! E
| E := E
| E;E

ref E allocates a new location, store the value of E in it, and returns it.

! E returns the contents of the location that E refers to.

E1 := E2 changes the contents of the location (E1) by the value of E2.

E1;E2 executes E1 and then E2 while accumulating effects.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 7 / 29

Example 1

let counter = ref 0

in let f = proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = let counter = ref 0

in proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = proc (x) (let counter = ref 0

in (counter := !counter + 1; !counter))

in let a = (f 0)

in let b = (f 0)

in (a - b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 8 / 29

Example 1

let counter = ref 0

in let f = proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = let counter = ref 0

in proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = proc (x) (let counter = ref 0

in (counter := !counter + 1; !counter))

in let a = (f 0)

in let b = (f 0)

in (a - b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 8 / 29

Example 1

let counter = ref 0

in let f = proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = let counter = ref 0

in proc (x) (counter := !counter + 1; !counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

let f = proc (x) (let counter = ref 0

in (counter := !counter + 1; !counter))

in let a = (f 0)

in let b = (f 0)

in (a - b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 8 / 29

Example 2

We can make chains of references:

let x = ref (ref 0)

in (!x := 11; !(!x))

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 9 / 29

Semantics

Memory is modeled as a finite map from locations to values:

Val = Z + Bool + Procedure+Loc
Procedure = Var × E × Env
ρ ∈ Env = Var → Val

σ ∈ Mem = Loc → Val

Semantics rules additionally describe memory effects:

ρ, σ ⊢ E ⇒ v, σ′

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 10 / 29

Semantics
Existing rules are enriched with memory effects:

ρ, σ ⊢ n ⇒ n, σ ρ, σ ⊢ x ⇒ ρ(x), σ

ρ, σ0 ⊢ E1 ⇒ n1, σ1 ρ, σ1 ⊢ E2 ⇒ n2, σ2

ρ, σ0 ⊢ E1 + E2 ⇒ n1 + n2, σ2

ρ, σ0 ⊢ E ⇒ 0, σ1

ρ, σ0 ⊢ iszero E ⇒ true, σ1

ρ, σ0 ⊢ E ⇒ n, σ1

ρ, σ0 ⊢ iszero E ⇒ false, σ1
n ̸= 0

ρ, σ0 ⊢ E1 ⇒ true, σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ if E1 then E2 else E3 ⇒ v, σ2

ρ, σ0 ⊢ E1 ⇒ false, σ1 ρ, σ1 ⊢ E3 ⇒ v, σ2

ρ, σ0 ⊢ if E1 then E2 else E3 ⇒ v, σ2

ρ, σ0 ⊢ E1 ⇒ v1, σ1 [x 7→ v1]ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ let x = E1 in E2 ⇒ v, σ2

ρ, σ ⊢ proc x E ⇒ (x,E, ρ), σ

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2 [x 7→ v]ρ′, σ2 ⊢ E ⇒ v′, σ3

ρ, σ0 ⊢ E1 E2 ⇒ v′, σ3

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 11 / 29

Semantics

Rules for new constructs:

ρ, σ0 ⊢ E ⇒ v, σ1

ρ, σ0 ⊢ ref E ⇒ l, [l 7→ v]σ1
l ̸∈ Dom(σ1)

ρ, σ0 ⊢ E ⇒ l, σ1

ρ, σ0 ⊢ ! E ⇒ σ1(l), σ1

ρ, σ0 ⊢ E1 ⇒ l, σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ E1 := E2 ⇒ v, [l 7→ v]σ2

ρ, σ0 ⊢ E1 ⇒ v1, σ1 ρ, σ1 ⊢ E2 ⇒ v2, σ2

ρ, σ0 ⊢ E1;E2 ⇒ v2, σ2

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 12 / 29

Example

ρ, σ0 ⊢ let x = ref (ref 0) in (!x := 11; !(!x)) ⇒

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 13 / 29

Exercise

Extend the language with recursive procedures:

P → E

E → n | x
| E + E | E − E
| iszero E | if E then E else E
| let x = E in E
| letrec f(x) = E in E
| proc x E | E E
| ref E
| ! E
| E := E
| E;E

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 14 / 29

Exercise (Continued)

Domain:

Val = Z + Bool + Procedure+Loc
Procedure = Var × E × Env
ρ ∈ Env = Var → Val

σ ∈ Mem = Loc → Val

Semantics rules:

ρ, σ0 ⊢ letrec f(x) = E1 in E2 ⇒

ρ, σ0 ⊢ E1 E2 ⇒

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 15 / 29

A Language with Implicit References

P → E

E → n | x
| E + E | E − E
| iszero E | if E then E else E
| let x = E in E
| proc x E | E E
| x := E
| E;E

In this design, every variable denotes a reference and is mutable.

x := E changes the contents of x by the value of E.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 16 / 29

Examples

Computing the number of times f has been called:

let counter = 0

in let f = proc (x) (counter := counter + 1; counter)

in let a = (f 0)

in let b = (f 0)

in (a-b)

let f = let counter = 0

in proc (x) (counter := counter + 1; counter)

in let a = (f 0)

in let b = (f 0)

in (a-b)

let f = proc (x) (let counter = 0

in (counter := counter + 1; counter))

in let a = (f 0)

in let b = (f 0)

in (a-b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 17 / 29

Examples

Computing the number of times f has been called:

let counter = 0

in let f = proc (x) (counter := counter + 1; counter)

in let a = (f 0)

in let b = (f 0)

in (a-b)

let f = let counter = 0

in proc (x) (counter := counter + 1; counter)

in let a = (f 0)

in let b = (f 0)

in (a-b)

let f = proc (x) (let counter = 0

in (counter := counter + 1; counter))

in let a = (f 0)

in let b = (f 0)

in (a-b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 17 / 29

Examples

Computing the number of times f has been called:

let counter = 0

in let f = proc (x) (counter := counter + 1; counter)

in let a = (f 0)

in let b = (f 0)

in (a-b)

let f = let counter = 0

in proc (x) (counter := counter + 1; counter)

in let a = (f 0)

in let b = (f 0)

in (a-b)

let f = proc (x) (let counter = 0

in (counter := counter + 1; counter))

in let a = (f 0)

in let b = (f 0)

in (a-b)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 17 / 29

Exercise

What is the result of the program?

let f = proc (x)

proc (y)

(x := x + 1; x - y)

in ((f 44) 33)

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 18 / 29

Semantics

References are no longer values and every variable denotes a reference:

Val = Z + Bool + Procedure
Procedure = Var × E × Env
ρ ∈ Env = Var → Loc

σ ∈ Mem = Loc → Val

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 19 / 29

Semantics

ρ, σ ⊢ n ⇒ n, σ ρ, σ ⊢ x ⇒ σ(ρ(x)), σ

ρ, σ0 ⊢ E1 ⇒ n1, σ1 ρ, σ1 ⊢ E2 ⇒ n2, σ2

ρ, σ0 ⊢ E1 + E2 ⇒ n1 + n2, σ2

ρ, σ0 ⊢ E ⇒ 0, σ1

ρ, σ0 ⊢ iszero E ⇒ true, σ1

ρ, σ0 ⊢ E1 ⇒ true, σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ if E1 then E2 else E3 ⇒ v, σ2

ρ, σ ⊢ proc x E ⇒ (x,E, ρ), σ

ρ, σ0 ⊢ E ⇒ v, σ1

ρ, σ0 ⊢ x := E ⇒ v, [ρ(x) 7→ v]σ1

ρ, σ0 ⊢ E1 ⇒ v1, σ1 [x 7→ l]ρ, [l 7→ v1]σ1 ⊢ E2 ⇒ v, σ2

ρ, σ0 ⊢ let x = E1 in E2 ⇒ v, σ2
l ̸∈ Dom(σ1)

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ⊢ E ⇒ v′, σ3

ρ, σ0 ⊢ E1 E2 ⇒ v′, σ3
l ̸∈ Dom(σ2)

ρ, σ0 ⊢ E1 ⇒ v1, σ1 ρ, σ1 ⊢ E2 ⇒ v2, σ2

ρ, σ0 ⊢ E1;E2 ⇒ v2, σ2

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 20 / 29

Example

let f = let count = 0

in proc (x) (count := count + 1; count)

in let a = (f 0)

in let b = (f 0)

in a - b

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 21 / 29

Exercise

Extend the language with recursive procedures:

P → E

E → n | x
| E + E | E − E
| iszero E | if E then E else E
| let x = E in E
| letrec f(x) = E in E
| proc x E | E E
| x := E
| E;E

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 22 / 29

Exercise (Continued)

Domain:
Val = Z + Bool + Procedure

Procedure = Var × E × Env
ρ ∈ Env = Var → Loc

σ ∈ Mem = Loc → Val

Semantics rules:

ρ, σ0 ⊢ letrec f(x) = E1 in E2 ⇒

ρ, σ0 ⊢ E1 E2 ⇒

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 23 / 29

Parameter-Passing Variations

Our current strategy of calling a procedure is call-by-value. The
formal parameter refers to a new location containing the value of the
actual parameter:

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ⊢ E ⇒ v′, σ3

ρ, σ0 ⊢ E1 E2 ⇒ v′, σ3
l ̸∈ Dom(σ2)

The most commonly used form of parameter-passing.

For example, the assignment to x has no effect on the contents of a:

let p = proc (x) (x := 4)

in let a = 3

in ((p a); a)

Under call-by-reference, the assignment changes the value of a after
the call.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 24 / 29

Parameter-Passing Variations

Our current strategy of calling a procedure is call-by-value. The
formal parameter refers to a new location containing the value of the
actual parameter:

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ⊢ E ⇒ v′, σ3

ρ, σ0 ⊢ E1 E2 ⇒ v′, σ3
l ̸∈ Dom(σ2)

The most commonly used form of parameter-passing.

For example, the assignment to x has no effect on the contents of a:

let p = proc (x) (x := 4)

in let a = 3

in ((p a); a)

Under call-by-reference, the assignment changes the value of a after
the call.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 24 / 29

Parameter-Passing Variations

Our current strategy of calling a procedure is call-by-value. The
formal parameter refers to a new location containing the value of the
actual parameter:

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 ρ, σ1 ⊢ E2 ⇒ v, σ2

[x 7→ l]ρ′, [l 7→ v]σ2 ⊢ E ⇒ v′, σ3

ρ, σ0 ⊢ E1 E2 ⇒ v′, σ3
l ̸∈ Dom(σ2)

The most commonly used form of parameter-passing.

For example, the assignment to x has no effect on the contents of a:

let p = proc (x) (x := 4)

in let a = 3

in ((p a); a)

Under call-by-reference, the assignment changes the value of a after
the call.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 24 / 29

Call-By-Reference Parameter-Passing

The location of the caller’s variable is passed, rather than the contents of
the variable.

Extend the syntax:

E →
...

| E E
| E ⟨y⟩

Extend the semantics:

ρ, σ0 ⊢ E1 ⇒ (x,E, ρ′), σ1 [x 7→ ρ(y)]ρ′, σ1 ⊢ E ⇒ v′, σ2

ρ, σ0 ⊢ E1 ⟨y⟩ ⇒ v′, σ2

What is the benefit of call-by-reference compared to call-by-value?

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 25 / 29

Examples

let p = proc (x) (x := 4)

in let a = 3

in ((p <a>); a)

let f = proc (x) (x := 44)

in let g = proc (y) (f <y>)

in let z = 55

in ((g <z>); z)

let swap = proc (x) proc (y)

let temp = x

in (x := y; y := temp)

in let a = 33

in let b = 44

in (((swap <a>)); (a-b))

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 26 / 29

Examples

let p = proc (x) (x := 4)

in let a = 3

in ((p <a>); a)

let f = proc (x) (x := 44)

in let g = proc (y) (f <y>)

in let z = 55

in ((g <z>); z)

let swap = proc (x) proc (y)

let temp = x

in (x := y; y := temp)

in let a = 33

in let b = 44

in (((swap <a>)); (a-b))

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 26 / 29

Examples

let p = proc (x) (x := 4)

in let a = 3

in ((p <a>); a)

let f = proc (x) (x := 44)

in let g = proc (y) (f <y>)

in let z = 55

in ((g <z>); z)

let swap = proc (x) proc (y)

let temp = x

in (x := y; y := temp)

in let a = 33

in let b = 44

in (((swap <a>)); (a-b))

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 26 / 29

Variable Aliasing

More than one call-by-reference parameter may refer to the same location:

let b = 3

in let p = proc (x) proc (y)

(x := 4; y)

in ((p))

A variable aliasing is created: x and y refer to the same location

With aliasing, reasoning about program behavior is very difficult,
because an assignment to one variable may change the value of
another.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 27 / 29

Lazy Evaluation

So far all the parameter-passing strategies are eager in that they
always evaluate the actual parameter before calling a procedure.

In eager evaluation, procedure arguments are completely evaluated
before passing them to the procedure.

On the other hand, lazy evaluation delays the evaluation of arguments
until it is actually needed. If the procedure body never uses the
parameter, it will never be evaluated.

Lazy evaluation potentially avoids non-termination:

letrec infinite(x) = (infinite x)

in let f = proc (x) (1)

in (f (infinite 0))

Lazy evaluation is popular in functional languages, because lazy
evaluation makes it difficult to determine the order of evaluation,
which is essential to understanding a program with effects.

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 28 / 29

Summary

Our language is now (somewhat) realistic:

expressions, procedures, recursion,

states with explicit/implicit references

parameter-passing variations

Hakjoo Oh COSE212 2024 Fall, Lecture 8 August 30, 2024 29 / 29

