
COSE212: Programming Languages

Lecture 7 — Design and Implementation of PLs

(3) Lexical Scoping of Variables

Hakjoo Oh
2024 Fall

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 1 / 16



Goal

Understand lexical scoping in a more systematic way.

Variable declaration and use

Scoping rule

Lexical address

Nameless representation

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 2 / 16



References and Declarations

In programming languages, variables appear in two different ways:

A variable reference is a use of the variable.

A variable declaration introduces the variable as a name for some
value.

Examples:
(f x y)

proc (x) (x + 3)

let x = y + 7 in x + 3

We say a variable reference is bound by the declaration with which it
is associated, and that the variable is bound to its value.

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 3 / 16



Scoping Rules

Every programming language has some rules to determine the
corresponding declaration of a variable reference. Called scoping rules.

Most programming languages use lexical scoping rules, where the
declaration of a reference is found by searching outward from the
reference until we find a declaration of the variable:

let x = 3 // call this x1

in let y = 4

in (let x = y + 5 // call this x2

in x * y) // Here x refers to x2

+ x // Here x refers to x1

We can determine the declaration of each variable reference without
executing the program.

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 4 / 16



Static vs. Dynamic Properties of Programs

Properties of programs are classified into static and dynamic
properties.

Properties that can be computed without executing the program are
called static properties.

▶ ex) declaration, scope, etc

Properties that cannot be computed without executing the program
are called dynamic properties. Dynamic properties are only
determined at run-time.

▶ ex) values, types, the absence of bugs, etc.

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 5 / 16



Example: Lexical Scopes of Variables

Declarations have limited scopes, each of which lies entirely within another:

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 6 / 16



Example: Lexical Scopes of Variables

Declarations have limited scopes, each of which lies entirely within another:

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 7 / 16



Lexical Address

Execution of the scoping algorithm can be viewed as a search outward
from a variable reference.

The number of declarations crossed to find the associated declaration
is called the lexical depth of a variable reference.

let x = 1

in let y = 2

in x + y

The lexical depth of a variable reference uniquely identifes the
declaration to which it refers.

Therefore, variable names are entirely removed from the program, and
variable references are replaced by their lexical address:

let 1

in let 2

in #1 + #0

“Nameless” or “De Bruijn” representation.

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 8 / 16



Examples: Nameless Representation

(let a = 5 in proc (x) (x-a)) 7

(let x = 37

in proc (y)

let z = (y - x)

in (x - y)) 10

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 9 / 16



Lexical Address

The lexical address of a variable indicates the position of the variable
in the environment.

let x = 1

in let y = 2

in x + y

(let a = 5 in proc (x) (x-a)) 7

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 10 / 16



Nameless Proc

Syntax

P → E

E → n
| #n
| E + E
| E − E
| iszero E
| if E then E else E
| let E in E
| proc E
| E E

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 11 / 16



Nameless Proc

Semantics
Val = Z + Bool + Procedure

Procedure = E × Env
Env = Val∗

ρ ⊢ n ⇒ n ρ ⊢ #n ⇒ ρn

ρ ⊢ E1 ⇒ n1 ρ ⊢ E2 ⇒ n2

ρ ⊢ E1 + E2 ⇒ n1 + n2

ρ ⊢ E ⇒ 0

ρ ⊢ iszero E ⇒ true

ρ ⊢ E ⇒ n

ρ ⊢ iszero E ⇒ false
n ̸= 0

ρ ⊢ E1 ⇒ true ρ ⊢ E2 ⇒ v

ρ ⊢ if E1 then E2 else E3 ⇒ v

ρ ⊢ E1 ⇒ false ρ ⊢ E3 ⇒ v

ρ ⊢ if E1 then E2 else E3 ⇒ v

ρ ⊢ E1 ⇒ v1 v1 :: ρ ⊢ E2 ⇒ v

ρ ⊢ let E1 in E2 ⇒ v

ρ ⊢ proc E ⇒ (E, ρ)

ρ ⊢ E1 ⇒ (E, ρ′) ρ ⊢ E2 ⇒ v v :: ρ′ ⊢ E ⇒ v′

ρ ⊢ E1 E2 ⇒ v′

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 12 / 16



Example

[] ⊢ (let 37 in proc (let (#0 -#1) in (#2 - #1))) 10 ⇒ 27

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 13 / 16



Translation
The nameless version of a program P is defined to be trans(E)([]):

trans(n)(ρ) = n
trans(x)(ρ) = #n (n is the first position of x in ρ)

trans(E1 + E2)(ρ) = trans(E1)(ρ) + trans(E2)(ρ)
trans(iszeroE)(ρ) = iszero (trans(E)(ρ))

trans(if E1 then E2 else E3)(ρ) = if trans(E1)(ρ)
then trans(E2)(ρ) else trans(E3)(ρ)

trans(let x = E1 in E2)(ρ) = let trans(E1)(ρ) in trans(E2)(x :: ρ)
trans(proc(x) E)(ρ) = proc trans(E)(x :: ρ)

trans(E1 E2)(ρ) = trans(E1)(ρ) trans(E2)(ρ)

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 14 / 16



Example

trans


(let x = 37

in proc (y)
let z = (y− x)
in (x− y)) 10

 ([]) =

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 15 / 16



Summary

In lexical scoping, scoping rules are static properties: nameless
representation with lexical addresses.

Lexical address predicts the place of the variable in the environment.

Compilers routinely use the nameless representation: Given an input
program P ,

1 translate it to trans(P )([]),
2 execute the nameless program.

Hakjoo Oh COSE212 2024 Fall, Lecture 7 August 30, 2024 16 / 16


