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A Fundamental Question

Programming languages look very different.

C, C++, Java, OCaml, Haskell, Scala, JavaScript, etc
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Example: QuickSort in C

void swap(int* a, int* b) { int t = *a; *a = *b; *b = t; }

int partition (int arr[], int low, int high) {

int pivot = arr[high];

int i = (low - 1);

for (int j = low; j <= high- 1; j++) {

if (arr[j] <= pivot) {

i++;

swap(&arr[i], &arr[j]);

}

}

swap(&arr[i + 1], &arr[high]);

return (i + 1);

}

void quickSort(int arr[], int low, int high) {

if (low < high) {

int pi = partition(arr, low, high);

quickSort(arr, low, pi - 1);

quickSort(arr, pi + 1, high);

}

}
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Example: QuickSort in Haskell

quicksort [] = []

quicksort (x:xs) = quicksort ys ++ [x] ++ quicksort zs

where

ys = [a | a <- xs, a <=x]

zs = [b | b <- xs, b > x]
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A Fundamental Question

Are they different fundamentally? or Is there a core mechanism underlying
all programming languages?
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Syntactic Sugar

Syntactic sugar is syntax that makes a language “sweet”: it does not
add expressiveness but makes programs easier to read and write.

For example, we can “desugar” the let expression:

let x = E1 in E2
desugar
=⇒ (proc x E2) E1

Exercise) Desugar the program:

let x = 1 in

let y = 2 in

x + y
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Syntactic Sugar

Q) Identify all syntactic sugars of the language:

E → n
| x
| E + E
| E − E
| iszero E
| if E then E else E
| let x = E in E
| letrec f(x) = E in E
| proc x E
| E E
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Lambda Calculus (λ-Calculus)

By removing all syntactic sugars from the language, we obtain a
minimal language, called lambda calculus:

e → x variables
| λx.e abstraction
| e e application

Programming language = Lambda calculus + Syntactic sugars
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Origins of Programming Languages and Computer

In 1935, Church developed λ-calculus as a formal system for
mathematical logic and argued that any computable function on
natural numbers can be computed with λ-calculus. Since then,
λ-calculus became the model of programming languages.

In 1936, Turing independently developed Turing machine and argued
that any computable function on natural numbers can be computed
with the machine. Since then, Turing machine became the model of
computers.
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Church-Turing Thesis

A surprising fact is that the classes of λ-calculus and Turing machines
can compute coincide even though they were developed independently.

Church and Turing proved that the classes of computable functions
defined by λ-calculus and Turing machine are equivalent.

A function is λ-computable if and only if Turing computable.

This equivalence has led mathematicians and computer scientists to
believe that these models are “universal”: A function is computable if
and only if λ-computable if and only if Turing computable.
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λ-Calculus is Everywhere

λ-calculus had immense impacts on programming languages.

It has been the core of functional programming languages (e.g., Lisp,
ML, Haskell, Scala, etc).

Lambdas in other languages:
▶ Java8

(int n, int m) -> n + m

▶ C++11
[](int x, int y) { return x + y; }

▶ Python
(lambda x, y: x + y)

▶ JavaScript
function (a, b) { return a + b }
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Syntax of Lambda Calculus

e → x variables
| λx.e abstraction
| e e application

Examples:

x y z
λx.x λx.y λx.λy.x

x y (λx.x) z x λy.z ((λx.x) λx.x)

Conventions when writing λ-expressions:
1 Application associates to the left, e.g., s t u = (s t) u
2 The body of an abstraction extends as far to the right as possible, e.g.,

λx.λy.x y x = λx.(λy.((x y) x))
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Bound and Free Variables

An occurrence of variable x is said to be bound when it occurs inside
λx, otherwise said to be free.

▶ λy.(x y)
▶ λx.x
▶ λz.λx.λx.(y z)
▶ (λx.x) x

Expressions without free variables is said to be closed expressions or
combinators.
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Evaluation

To evaluate λ-expression e,

1 Find a sub-expression of the form:

(λx.e1) e2

Expressions of this form are called “redex” (reducible expression).

2 Rewrite the expression by substituting the e2 for every free
occurrence of x in e1:

(λx.e1) e2 → [x 7→ e2]e1

This rewriting is called β-reduction

Repeat the above two steps until there are no redexes.
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Evaluation

λx.x

(λx.x) y

(λx.x y)

(λx.x y) z

(λx.(λy.x)) z

(λx.(λx.x)) z

(λx.(λy.x)) y

(λx.(λy.x y)) (λx.x) z
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Substitution

The definition of [x 7→ e1]e2:

[x 7→ e1]x = e1
[x 7→ e1]y = y

[x 7→ e1](λy.e2) = λz.[x 7→ e1]([y 7→ z]e2) (new z)
[x 7→ e1](e2 e3) = ([x 7→ e1]e2 [x 7→ e1]e3)
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Evaluation Strategy

In a lambda expression, multiple redexes may exist. Which redex to
reduce next?

λx.x (λx.x (λz.(λx.x) z)) = id (id (λz.id z))

redexes:
id (id (λz.id z))

id (id (λz.id z))

id (id (λz.id z))

Evaluation strategies:
▶ Normal order
▶ Call-by-name
▶ Call-by-value
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Normal order strategy

Reduce the leftmost, outermost redex first:

id (id (λz.id z))

→ id (λz.id z))

→ λz.id z
→ λz.z
̸→

The evaluation is deterministic (i.e., partial function).

Hakjoo Oh COSE212 2024 Fall, Lecture 17 August 30, 2024 18 / 30



Call-by-name strategy

Follow the normal order reduction, not allowing reductions inside
abstractions:

id (id (λz.id z))

→ id (λz.id z))

→ λz.id z
̸→

The call-by-name strategy is non-strict (or lazy) in that it evaluates
arguments that are actually used.
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Call-by-value strategy

Reduce the outermost redex whose right-hand side has a value (a term
that cannot be reduced any further):

id (id (λz.id z))

→ id (λz.id z))

→ λz.id z
̸→

The call-by-name strategy is strict in that it always evaluates arguments,
whether or not they are used in the body.
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Compiling to Lambda Calculus

Consider the source language:

E → true
| false
| n
| x
| E + E
| iszero E
| if E then E else E
| let x = E in E
| letrec f(x) = E in E
| proc x E
| E E

Define the translation procedure from E to λ-calculus.
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Compiling to Lambda Calculus

E: the translation result of E in λ-calculus

true = λt.λf.t
false = λt.λf.f

0 = λs.λz.z
1 = λs.λz.(s z)
n = λs.λz.(sn z)
x = x

E1 + E2 = (λn.λm.λs.λz.m s (n s z)) E1 E2

iszero E = (λm.m (λx.false) true) E

if E1 then E2 else E3 = E1 E2 E3

let x = E1 in E2 = (λx.E2) E1

letrec f(x) = E1 in E2 = let f = Y (λf.λx.E1) in E2

proc x E = λx.E

E1 E2 = E1 E2
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Correctness of Compilation

Theorem

For any expression E,
[[E]] = [[E]]

where [[E]] denotes the value that results from evaluating E.
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Examples: Booleans

if true then 0 else 1 = true 0 1
= (λt.λf.t) 0 1
= 0
= λs.λz.z

Note that

[[if true then 0 else 1]] = [[if true then 0 else 1]]
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Exercises

Define the translation for the boolean operations:

E1 and E2 =

E1 or E2 =

not E =
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Example: Numerals

1 + 2 = (λn.λm.λs.λz.m s (n s z)) 1 2
= λs.λz.2 s (1 s z)
= λs.λz.2 s (λs.λz.(s z) s z)
= λs.λz.2 s (s z)
= λs.λz.(λs.λz.(s (s z))) s (s z)
= λs.λz.s (s (s z))
= 3
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Exercises

Define the translation for the boolean operations:

succ E =

pred E =

E1 ∗ E2 =

EE2
1 =

Hakjoo Oh COSE212 2024 Fall, Lecture 17 August 30, 2024 27 / 30



Recursion

For example, the factorial function

f(n) = if n = 0 then 1 else n ∗ f(n − 1)

is encoded by

fact = Y (λf.λn.if n = 0 then 1 else n ∗ f(n − 1))

where Y is the Y-combinator (or fixed point combinator):

Y = λf.(λx.f (x x))(λx.f (x x))

Then, fact n computes n!.

Recursive functions can be encoded by composing non-recursive
functions!
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Recursion

Let F = λf.λn.if n = 0 then 1 else n ∗ f(n − 1) and
G = λx.F (x x).

fact 1
= (Y F ) 1
= (λf.((λx.f(x x))(λx.f(x x))) F ) 1
= ((λx.F (x x))(λx.F (x x))) 1
= (G G) 1
= (F (G G)) 1
= (λn.if n = 0 then 1 else n ∗ (G G)(n − 1)) 1
= if 1 = 0 then 1 else 1 ∗ (G G)(1 − 1))
= if false then 1 else 1 ∗ (G G)(1 − 1))
= 1 ∗ (G G)(1 − 1)
= 1 ∗ (F (G G))(1 − 1)
= 1 ∗ (λn.if n = 0 then 1 else n ∗ (G G)(n − 1))(1 − 1)
= 1 ∗ if (1 − 1) = 0 then 1 else (1 − 1) ∗ (G G)((1 − 1) − 1)
= 1 ∗ 1
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Summary

Programming language = Lambda calculus + Syntactic sugars

λ-calculus is a minimal programming language.
▶ Syntax: e → x | λx.e | e e
▶ Semantics: β-reduction

Yet, λ-calculus is Turing-complete.
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