
COSE212: Programming Languages

Lecture 16 — Let-Polymorphic Type System

Hakjoo Oh
2024 Fall

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 1 / 14

Motivation

Our type system is useful but it is not as expressive as we would like
it to be. In particular, it does not support polymorphism1. For
example, it rejects the following program:

let f = proc (x) x in

if (f (iszero (0))) then (f 11) else (f 22)

Polymorphic functions are widely used in practice, so OCaml supports
polymorphism:

let f = fun x -> x in

if (f (0=0)) then (f 11) else (f 22);;

- : int = 11

Let’s extend our type system to the let-polymorphic type system, the
ML-style polymorphism.

1Polymorphism refers to the language mechanisms that allow a single part of a
program to be used with different types in different contexts

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 2 / 14

What went wrong?

let f = proc (x) x in

if (f (iszero (0))) then (f 11) else (f 22)

We assign type t → t to f, generating the constraint that the
argument and return types are the same.

Intuitively, the program can be well typed because the all usages of f
satisfy the required constraint:

▶ In (f (iszero 0)), we can assign bool → bool to f.
▶ In (f 11) and (f 22), we can assign int → int to f.

However, our type checking algorithm uses the same type variable t in
both cases and generates the spurious constraint that bool = int.

Any idea to fix this problem?

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 3 / 14

A Simple Solution

Associate a different variable t with each use of f. This is easily
accomplished by substituting the body of f for each occurrence of f.
For example, convert the program

let f = proc (x) x in

if (f (iszero (0))) then (f 11) else (f 22)

into the following before type-checking:

if ((proc (x) x) (iszero (0)))

then ((proc (x) x) 11)

else ((proc (x) x) 22)

which is accepted by our type system as we can generate different type
variables for different copies of the procedure.

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 4 / 14

Typing Rule

Instead of the ordinary typing rule for let:

Γ ⊢ E1 : t1 [x 7→ t1]Γ ⊢ E2 : t2
Γ ⊢ let x = E1 in E2 : t2

we use the new typing rule:

Γ ⊢ [x 7→ E1]E2 : t2
Γ ⊢ let x = E1 in E2 : t2

The corresponding algorithm for generating type equation:

V(Γ, let x = e1 in e2, t) = V(Γ, [x 7→ e1]e2, t)

The ordinary unification algorithm does the rest.

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 5 / 14

Flaws

This simplistic method has some flaws that need to be addressed before
we can use it in practice.

1 Unused definitions are not type-checked, so a program like

let x = <unsafe code> in 5

will pass the type-checker. (This can be easily fixed. See Exercise 1)

2 The method is not efficient if the body of let contains many
occurrences of the bound variables:

let a = <complex code> in

let b = a + a in

let c = b + b in

let d = c + c in

...

The typing rule can cause the type-checker to perform an amount of
work that is exponential in the size of the original code.

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 6 / 14

Exercise 1

Fix the typing rule and V to repair the first problem.

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 7 / 14

Let-Polymorphic Type Checking Algorithm

To avoid the re-computation, practical implementations of languages with
let-polymorphism use a more clever algorithm. In outline, the
type-checking of

let x = e1 in e2

proceeds as follows:

We find the most general type t of e1 by running the ordinary
type-checking algorithm.

We generalize any variables remaining in the type, obtaining the type
scheme ∀α1 . . . αn.t, where α1 . . . αn appear in t.

We extend the type environment to record the type scheme for the
bound variable x, and start type-checking e2

Each time we encounter an occurrence of x, we generate fresh type
variables β1 . . . βn and use them to instantiate the type scheme.

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 8 / 14

Example 1

let f = proc (x) 1 in (f 1) + (f true)

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 9 / 14

Example 2

let f = proc (x) x if (f true) then 1 else ((f f) 2)

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 10 / 14

Generalization Is Not Always Safe

Care is needed when generalizing types because doing so is not always
safe. For example, consider the program:

proc (c)

(let f = proc (x) c in

if (f true) then 1 else ((f f) 2))

The most general type for f is t1 → t2.

Generalizing the type, we obtain the type scheme ∀t1, t2.t1 → t2.

The body of let is well-typed by instantiating t2 to bool for the first
occurrence of f and to some function type for the second occurrence
of f. The type system accepts the program.

However, the program produces runtime error because no value c can
be both a boolean and a procedure.

To fix this problem, we disallow generalization for any type variables
that are mentioned in the type environment. The safe type scheme for
f is ∀t1.t1 → t2. With this generalization the program gets rejected.

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 11 / 14

Let-Polymorphic Type System

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 12 / 14

Efficiency

The algorithm is much more efficient than the simplistic approach.

In practice, its time complexity is almost linear.

However, the worst-case time complexity is still exponential.

For example, try to evaluate the following OCaml program. It takes a
very long time to typecheck.

let f0 = fun x -> (x,x) in

let f1 = fun y -> f0 (f0 y) in

let f2 = fun y -> f1 (f1 y) in

let f3 = fun y -> f2 (f2 y) in

let f4 = fun y -> f3 (f3 y) in

let f5 = fun y -> f4 (f4 y) in

f5 (fun z -> z)

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 13 / 14

Summary

We extended our type system (called simple type system) to
let-polymorphic type system, the core of ML type system.

The extension is conservative:

Γ ⊢simple E : T =⇒ Γ ⊢poly E : T

Let-polymorphic type system accepts all programs acceptable by the
simple type system.

Hakjoo Oh COSE212 2024 Fall, Lecture 16 August 30, 2024 14 / 14

