COSE212: Programming Languages Lecture 16 — Let-Polymorphic Type System

Hakjoo Oh 2024 Fall

Motivation

Our type system is useful but it is not as expressive as we would like it to be. In particular, it does not support *polymorphism* 1 . For example, it rejects the following program:

$$
let f = proc (x) x in
$$

- if $(f (iszero (0)))$ then $(f 11)$ else $(f 22)$
- Polymorphic functions are widely used in practice, so OCaml supports polymorphism:

let $f = f$ un $x \rightarrow x$ in if $(f(0=0))$ then $(f(11))$ else $(f(22))$; $-$: int = 11

Let's extend our type system to the let-polymorphic type system, the ML-style polymorphism.

 1 Polymorphism refers to the language mechanisms that allow a single part of a program to be used with different types in different contexts

What went wrong?

```
let f = proc(x) x inif (f (iszero (0))) then (f 11) else (f 22)
```
- \bullet We assign type $t \to t$ to f, generating the constraint that the argument and return types are the same.
- \bullet Intuitively, the program can be well typed because the all usages of f satisfy the required constraint:
	- ▶ In (f (iszero 0)), we can assign bool \rightarrow bool to f.
	- ▶ In (f 11) and (f 22), we can assign int \rightarrow int to f.
- \bullet However, our type checking algorithm uses the same type variable t in both cases and generates the spurious constraint that bool $=$ int.
- Any idea to fix this problem?

A Simple Solution

Associate a *different* variable t with each use of f . This is easily accomplished by substituting the body of f for each occurrence of f. For example, convert the program

```
let f = proc(x) x inif (f (iszero (0))) then (f 11) else (f 22)
```
into the following before type-checking:

```
if ((proc (x) x) (iszero (0)))then ((proc (x) x) 11)else ((proc (x) x) 22)
```
which is accepted by our type system as we can generate different type variables for different copies of the procedure.

Typing Rule

Instead of the ordinary typing rule for let:

$$
\frac{\Gamma \vdash E_1 : t_1 \quad [x \mapsto t_1] \Gamma \vdash E_2 : t_2}{\Gamma \vdash \text{let } x = E_1 \text{ in } E_2 : t_2}
$$

we use the new typing rule:

$$
\frac{\Gamma \vdash [x \mapsto E_1]E_2 : t_2}{\Gamma \vdash \texttt{let } x = E_1 \texttt{ in } E_2 : t_2}
$$

The corresponding algorithm for generating type equation:

$$
\mathcal{V}(\Gamma, \text{let } x = e_1 \text{ in } e_2, t) = \mathcal{V}(\Gamma, [x \mapsto e_1]e_2, t)
$$

The ordinary unification algorithm does the rest.

Flaws

This simplistic method has some flaws that need to be addressed before we can use it in practice.

1 Unused definitions are not type-checked, so a program like

```
let x = \text{Sunsafe code} in 5
```
will pass the type-checker. (This can be easily fixed. See Exercise 1)

2 The method is not efficient if the body of let contains many occurrences of the bound variables:

```
let a = <complex code> in
let b = a + a in
  let c = b + b in
    let d = c + c in
      ...
```
The typing rule can cause the type-checker to perform an amount of work that is exponential in the size of the original code.

Exercise 1

Fix the typing rule and $\mathcal V$ to repair the first problem.

Let-Polymorphic Type Checking Algorithm

To avoid the re-computation, practical implementations of languages with let-polymorphism use a more clever algorithm. In outline, the type-checking of

let $x = e_1$ in e_2

proceeds as follows:

- We find the most general type t of e_1 by running the ordinary type-checking algorithm.
- We generalize any variables remaining in the type, obtaining the type scheme $\forall \alpha_1 \dots \alpha_n.t$, where $\alpha_1 \dots \alpha_n$ appear in t.
- We extend the type environment to record the type scheme for the bound variable x, and start type-checking e_2
- Each time we encounter an occurrence of x , we generate fresh type variables $\beta_1 \dots \beta_n$ and use them to instantiate the type scheme.

Example 1

let $f = \text{proc}(x) 1$ in $(f 1) + (f true)$

Example 2

let $f = \text{proc}(x) x$ if $(f \text{ true})$ then 1 else $((f f) 2)$

Generalization Is Not Always Safe

Care is needed when generalizing types because doing so is not always safe. For example, consider the program:

```
proc (c)
(let f = proc(x) c in
   if (f true) then 1 else ((f f) 2))
```
- The most general type for f is $t_1 \rightarrow t_2$.
- Generalizing the type, we obtain the type scheme $\forall t_1, t_2.t_1 \rightarrow t_2$.
- The body of let is well-typed by instantiating t_2 to bool for the first occurrence of f and to some function type for the second occurrence of f. The type system accepts the program.
- However, the program produces runtime error because no value c can be both a boolean and a procedure.
- To fix this problem, we disallow generalization for any type variables that are mentioned in the type environment. The safe type scheme for f is $\forall t_1 \cdot t_1 \rightarrow t_2$. With this generalization the program gets rejected.

Let-Polymorphic Type System

Efficiency

- The algorithm is much more efficient than the simplistic approach.
- In practice, its time complexity is almost linear.
- However, the worst-case time complexity is still exponential.
- For example, try to evaluate the following OCaml program. It takes a very long time to typecheck.

let f0 = fun x -> (x,x) in let f1 = fun y -> f0 (f0 y) in let f2 = fun y -> f1 (f1 y) in let f3 = fun y -> f2 (f2 y) in let f4 = fun y -> f3 (f3 y) in let f5 = fun y -> f4 (f4 y) in f5 (fun z -> z)

Summary

- We extended our type system (called *simple type system*) to let-polymorphic type system, the core of ML type system.
- The extension is conservative:

$$
\Gamma \vdash_{simple} E : T \implies \Gamma \vdash_{poly} E : T
$$

Let-polymorphic type system accepts all programs acceptable by the simple type system.