
COSE212: Programming Languages

Lecture 13 — Automatic Type Inference (1)

Hakjoo Oh
2024 Fall

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 1 / 11

The Problem of Automatic Type Inference

Given a program E, infer the most general type of E if E can be typed
(i.e., [] ⊢ E : t for some t ∈ T). If E cannot be typed, say so.

let f = proc (x) (x + 1) in (proc (x) (x 1)) f

let f = proc (x) (x + 1) in (proc (x) (x true)) f

proc (x) x

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 2 / 11

Automatic Type Inference

A static analysis algorithm that automatically figures out types of
expressions by observing how they are used.

The algorithm is sound and complete with respect to the type system
design.

▶ (Sound) If the analysis finds a type for an expression, the expression is
well-typed with the type according to the type system.

▶ (Complete) If an expression has a type according to the type system,
the analysis is guaranteed to find the type.

The algorithm consists of two steps:
1 Generate type equations from the program text.
2 Solve the equations.

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 3 / 11

Generating Type Equations

For every subexpression and variable, introduce type variables and derive
equations between the type variables.

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 4 / 11

Example 1

proc (f︸︷︷︸
tf

) proc (x︸︷︷︸
tx

) ((f 3)︸ ︷︷ ︸
t3

− (f x)︸ ︷︷ ︸
t4︸ ︷︷ ︸

t2

)

︸ ︷︷ ︸
t1︸ ︷︷ ︸

t0

t0 = tf → t1
t1 = tx → t4
t3 = int
t4 = int
t2 = int
tf = int → t3
tf = tx → t4

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 5 / 11

Example 2

proc (f︸︷︷︸
tf

) (f 11︸ ︷︷ ︸
t1

)

︸ ︷︷ ︸
t0

t0 = tf → t1
tf = int → t1

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 6 / 11

Example 3

if x︸︷︷︸
tx

then (x − 1)︸ ︷︷ ︸
t1

else 0

︸ ︷︷ ︸
t0

tx = bool
t1 = t0
int = t0
tx = int
t1 = int

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 7 / 11

Example 4

proc (f︸︷︷︸
tf

) (iszero (f f)︸ ︷︷ ︸
t2︸ ︷︷ ︸

t1

)

︸ ︷︷ ︸
t0

t0 = tf → t1
t1 = bool
t2 = int
tf = tf → t2

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 8 / 11

Idea: Deriving Equations from Typing Rules

For each expression e and variable x, let te and tx denote the type of the
expression and variable. Then, the typing rules dictate the equations that
must hold between the type variables.

Γ ⊢ E1 : int Γ ⊢ E2 : int
Γ ⊢ E1 + E2 : int

tE1 = int ∧ tE2 = int ∧ tE1+E2 = int

Γ ⊢ E : int
Γ ⊢ iszero E : bool

tE = int ∧ t(iszero E) = bool

Γ ⊢ E1 : t1 → t2 Γ ⊢ E2 : t1
Γ ⊢ E1 E2 : t2

tE1 = tE2 → t(E1 E2)

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 9 / 11

Idea: Deriving Equations from Typing Rules

Γ ⊢ E1 : bool Γ ⊢ E2 : t Γ ⊢ E3 : t
Γ ⊢ if E1 then E2 else E3 : t

tE1 = bool ∧
tE2 = t(if E1 then E2 else E3) ∧
tE3 = t(if E1 then E2 else E3)

[x 7→ t1]Γ ⊢ E : t2
Γ ⊢ proc x E : t1 → t2

t(proc (x) E) = tx → tE

Γ ⊢ E1 : t1 [x 7→ t1]Γ ⊢ E2 : t2
Γ ⊢ let x = E1 in E2 : t2

tx = tE1 ∧ tE2 = t(let x=E1 in E2)

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 10 / 11

Summary

The algorithm for automatic type inference:
1 Generate type equations from the program text.

▶ Introduce type variables for each subexpression and variable.
▶ Generate equations between type variables according to typing rules.

2 Solve the equations.

Hakjoo Oh COSE212 2024 Fall, Lecture 13 August 30, 2024 11 / 11

