
Homework 4

COSE212, Fall 2024

Hakjoo Oh

Due: 11/17, 23:59

Problem 1 Consider the language ML− from HW3:

P → E

E → () unit
| true | false booleans
| n integers
| x variables
| E + E | E - E | E * E | E / E arithmetic
| E = E | E < E comparison
| not E negation
| nil empty list
| E :: E list cons
| E @ E list append
| head E list head
| tail E list tail
| isnil E checking empty list
| if E then E else E if
| let x = E in E let
| letrec f(x) = E in E recursion
| letrec f(x1) = E1 and g(x2) = E2 in E mutual recursion
| proc x E function definition
| E E function application
| print E print
| E;E sequence

In OCaml datatype:

type program = exp

and exp =

| UNIT

| TRUE

| FALSE

1

| CONST of int

| VAR of var

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| EQUAL of exp * exp

| LESS of exp * exp

| NOT of exp

| NIL

| CONS of exp * exp

| APPEND of exp * exp

| HEAD of exp

| TAIL of exp

| ISNIL of exp

| IF of exp * exp * exp

| LET of var * exp * exp

| LETREC of var * var * exp * exp

| LETMREC of (var * var * exp) * (var * var * exp) * exp

| PROC of var * exp

| CALL of exp * exp

| PRINT of exp

| SEQ of exp * exp

and var = string

Types for the language are defined as follows:

type typ =

TyUnit

| TyInt

| TyBool

| TyFun of typ * typ

| TyList of typ

| TyVar of tyvar

and tyvar = string

Implement a sound type checker, typeof, for the language (the notion of
soundness is defined with respect to the dynamic semantics of the language
defined in HW3):

typeof : exp -> typ

which takes a program and returns its type if the program is well-typed. When
the program is ill-typed, typeof should raise an exception TypeError.

2

