
Homework 1

COSE212, Fall 2024

Hakjoo Oh

Due: 9/22, 23:59

Academic Integrity / Assignment Policy

• All assignments must be your own work.

• Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

– Discussion must be limited to general discussion and must not involve
details of how to write code.

– You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

– Do not allow other students to copy your code.

– Do not post your code on the public web.

• Violating above rules gets you 0 points for the entire HW score.

Problem 1 Write a function

prime: int -> bool

that checks whether a number is prime (n is prime if and only if n is its own
smallest divisor except for 1). For example,

prime 2 = true

prime 3 = true

prime 4 = false

prime 17 = true

Problem 2 Write a function

range : int -> int -> int list

that takes two integers n and m, and creates a list of integers from n to m.
For example, range 3 7 produces [3;4;5;6;7]. When n > m, an empty list is
returned. For example, range 5 4 produces [].

1



Problem 3 Write a function

suml: int list list -> int

which takes a list of lists of integers and sums the integers included in all the
lists. For example, suml [[1;2;3]; []; [-1; 5; 2]; [7]] produces 19.

Problem 4 Write a function drop:

drop : ’a list -> int -> ’a list

that takes a list l and an integer n to take all but the first n elements of l. For
example,

drop [1;2;3;4;5] 2 = [3; 4; 5]

drop [1;2] 3 = []

drop ["C"; "Java"; "OCaml"] 2 = ["OCaml"]

Problem 5 Write two functions

max: int list -> int

min: int list -> int

that find maximum and minimum elements of a given list, respectively. For
example max [1;3;5;2] should evaluate to 5 and min [1;3;2] should be 1.

Problem 6 Write a higher-order function

sigma : (int -> int) -> int -> int -> int

such that sigma f a b computes

b∑
i=a

f(i).

For instance,
sigma (fun x -> x) 1 10

evaulates to 55 and
sigma (fun x -> x*x) 1 7

evaluates to 140.

Problem 7 Write a higher-order function

forall : (’a -> bool) -> ’a list -> bool

which decides if all elements of a list satisfy a predicate. For example,

forall (fun x -> x mod 2 = 0) [1;2;3]

evaluates to false while

forall (fun x -> x > 5) [7;8;9]

is true.

2



Problem 8 Write a function

double: (’a -> ’a) -> ’a -> ’a

that takes a function of one argument as argument and returns a function that
applies the original function twice. For example,

# let inc x = x + 1;;

val inc : int -> int = <fun>

# let mul x = x * 2;;

val mul : int -> int = <fun>

# (double inc) 1;;

- : int = 3

# (double inc) 2;;

- : int = 4

# ((double double) inc) 0;;

- : int = 4

# ((double (double double)) inc) 5;;

- : int = 21

# (double mul) 1;;

- : int = 4

# (double double) mul 2;;

- : int = 32

Problem 9 Binary trees can be defined as follows:

type btree =

Empty

|Node of int * btree * btree

For example, the following t1 and t2

let t1 = Node (1, Empty, Empty)

let t2 = Node (1, Node (2, Empty, Empty), Node (3, Empty, Empty))

are binary trees. Write the function

mem: int -> btree -> bool

that checks whether a given integer is in the tree or not. For example,

mem 1 t1

evaluates to true, and
mem 4 t2

evaluates to false.

Problem 10 Consider the inductive definition of binary trees:

n n ∈ Z
t

(t,nil)
t

(nil, t)

t1 t2
(t1, t2)

which can be defined in OCaml as follows:

3



type btree =

| Leaf of int

| Left of btree

| Right of btree

| LeftRight of btree * btree

For example, binary tree ((1, 2),nil) is represented by

Left (LeftRight (Leaf 1, Leaf 2))

Write a function that exchanges the left and right subtrees all the ways down.
For example, mirroring the tree ((1, 2),nil) produces (nil, (2, 1)); that is,

mirror (Left (LeftRight (Leaf 1, Leaf 2)))

evaluates to
Right (LeftRight (Leaf 2, Leaf 1)).

Problem 11 Natural numbers are defined inductively:

0

n

n+ 1

In OCaml, the inductive definition can be defined by the following a data type:

type nat = ZERO | SUCC of nat

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two
functions that add and multiply natural numbers:

natadd : nat -> nat -> nat

natmul : nat -> nat -> nat

For example,

# let two = SUCC (SUCC ZERO);;

val two : nat = SUCC (SUCC ZERO)

# let three = SUCC (SUCC (SUCC ZERO));;

val three : nat = SUCC (SUCC (SUCC ZERO))

# natmul two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))

# natadd two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))

4



Problem 12 Consider the following propositional formula:

type formula =

| True

| False

| Not of formula

| AndAlso of formula * formula

| OrElse of formula * formula

| Imply of formula * formula

| Equal of exp * exp

and exp =

| Num of int

| Plus of exp * exp

| Minus of exp * exp

Write the function
eval : formula -> bool

that computes the truth value of a given formula. For example,

eval (Imply (Imply (True,False), True))

evaluates to true, and

eval (Equal (Num 1, Plus (Num 1, Num 2)))

evaluates to false.

Problem 13 Write a function

diff : aexp * string -> aexp

that differentiates the given algebraic expression with respect to the variable
given as the second argument. The algebraic expression aexp is defined as fol-
lows:

type aexp =

| Const of int

| Var of string

| Power of string * int

| Times of aexp list

| Sum of aexp list

For example, x2 + 2x+ 1 is represented by

Sum [Power ("x", 2); Times [Const 2; Var "x"]; Const 1]

and differentiating it (w.r.t. “x”) gives 2x+ 2, which can be represented by

Sum [Times [Const 2; Var "x"]; Const 2]

Note that the representation of 2x+ 2 in aexp is not unique. For instance, the
following also represents 2x+ 2:

5



Sum

[Times [Const 2; Power ("x", 1)];

Sum

[Times [Const 0; Var "x"];

Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Const 0]]]];

Const 0]

Problem 14 Consider the following expressions:

type exp = X

| INT of int

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| SIGMA of exp * exp * exp

Implement a calculator for the expressions:

calculator : exp -> int

For instance,
10∑
x=1

(x ∗ x− 1)

is represented by

SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))

and evaluating it should give 375.

Problem 15 Consider the following language:

type exp = V of var

| P of var * exp

| C of exp * exp

and var = string

In this language, a program is simply a variable, a procedure, or a procedure
call. Write a checker function

check : exp -> bool

that checks if a given program is well-formed. A program is said to be well-
formed if and only if the program does not contain free variables; i.e., every
variable name is bound by some procedure that encompasses the variable. For
example, well-formed programs are:

• P ("a", V "a")

6



• P ("a", P ("a", V "a"))

• P ("a", P ("b", C (V "a", V "b")))

• P ("a", C (V "a", P ("b", V "a")))

Ill-formed ones are:

• P ("a", V "b")

• P ("a", C (V "a", P ("b", V "c")))

• P ("a", P ("b", C (V "a", V "c")))

7


