
OCaml Exercises

Hakjoo Oh
Korea University

Problem 1 The Fibonacci numbers can be defined as follows:

fib(n) =

 0 if n = 0
1 if n = 1
fib(n− 1) + fib(n− 2) otherwise

Write in OCaml the function

fib: int -> int

that computes the Fibonacci numbers.

Problem 2 Write a function

prime: int -> bool

that checks whether a number is prime (n is prime if and only if n is its own
smallest divisor except for 1). For example,

prime 2 = true

prime 3 = true

prime 4 = false

prime 17 = true

Problem 3 Define the function binarize:

binarize: int -> int list

that converts a decimal number to its binary representation. For example,

binarize 2 = [1; 0]

binarize 3 = [1; 1]

binarize 8 = [1; 0; 0; 0]

binarize 17 = [1; 0; 0; 0; 1]

Problem 4 Write a function

sigma : (int -> int) -> int -> int -> int
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such that sigma f a b computes

b∑
i=a

f(i).

For instance,
sigma (fun x -> x) 1 10

evaulates to 55 and
sigma (fun x -> x*x) 1 7

evaluates to 140.

Problem 5 Define the function iter:

iter : int * (int -> int) -> (int -> int)

such that
iter(n, f) = f ◦ · · · ◦ f︸ ︷︷ ︸

n

.

When n = 0, iter(n, f) is defined to be the identity function. When n > 0,
iter(n, f) is the function that applies f repeatedly n times. For instance,

iter(n, fun x -> 2+x) 0

evaluates to 2× n.

Problem 6 Write a function

double: (’a -> ’a) -> ’a -> ’a

that takes a function of one argument as argument and returns a function that
applies the original function twice. For example,

# let inc x = x + 1;;

val inc : int -> int = <fun>

# let mul x = x * 2;;

val mul : int -> int = <fun>

# (double inc) 1;;

- : int = 3

# (double inc) 2;;

- : int = 4

# ((double double) inc) 0;;

- : int = 4

# ((double (double double)) inc) 5;;

- : int = 21

# (double mul) 1;;

- : int = 4

# (double double) mul 2;;

- : int = 32
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Problem 7 Write a higher-order function

forall : (’a -> bool) -> ’a list -> bool

which decides if all elements of a list satisfy a predicate. For example,

forall (fun x -> x mod 2 = 0) [1;2;3]

evaluates to false while

forall (fun x -> x > 5) [7;8;9]

is true.

Problem 8 Write a function

suml: int list list -> int

which takes a list of lists of integers and sums the integers included in all the
lists. For example, suml [[1;2;3]; []; [-1; 5; 2]; [7]] produces 19.

Problem 9 Write two functions

max: int list -> int

min: int list -> int

that find maximum and minimum elements of a given list, respectively. For
example max [1;3;5;2] should evaluate to 5 and min [1;3;2] should be 1.

Problem 10 Write the function filter

filter : (’a -> bool) -> ’a list -> ’a list

Given a predicate p and a list l, filter p l returns all the elements of the
list l that satisfy the predicate p. The order of the elements in the input list is
preserved. For example,

# filter (fun x -> x mod 2 = 0) [1;2;3;4;5];;

- : int list = [2; 4]

# filter (fun x -> x > 0) [5;-1;0;2;-9];;

- : int list = [5; 2]

# filter (fun x -> x * x > 25) [1;2;3;4;5;6;7;8];;

- : int list = [6; 7; 8]

Problem 11 Write a function drop:

drop : ’a list -> int -> ’a list

that takes a list l and an integer n to take all but the first n elements of l. For
example,

drop [1;2;3;4;5] 2 = [3; 4; 5]

drop [1;2] 3 = []

drop ["C"; "Java"; "OCaml"] 2 = ["OCaml"]
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Problem 12 Write a higher-order function

dropWhile : (’a -> bool) -> ’a list -> ’a list

which removes elements of a list while they satisfy a predicate. For example,

dropWhile (fun x -> x mod 2 = 0) [2;4;7;9]

evaluates to [7;9] and

dropWhile (fun x-> x > 5) [1;3;7]

evaluates to [1;3;7].

Problem 13 Write a function

zip: int list * int list -> int list

which receives two lists a and b as arguments and combines the two lists by
inserting the ith element of a before the ith element of b. If b does not have an
ith element, append the excess elements of a in order. For example,

# zip ([1;3;5],[2;4;6]);;

- : int list = [1; 2; 3; 4; 5; 6]

# zip ([1;3],[2;4;6;8]);;

- : int list = [1; 2; 3; 4; 6; 8]

# zip ([1;3;5;7],[2;4]);;

- : int list = [1; 2; 3; 4; 5; 7]

Problem 14 Write a function

unzip: (’a * ’b) list -> ’a list * ’b list

that converts a list of pairs to a pair of lists. For example,

unzip [(1,"one");(2,"two");(3,"three")] = ([1;2;3],["one";"two";"three"])

Problem 15 Write a function

reduce : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c

Given a function f of type ’a -> ’b -> ’c -> ’c, the expression

reduce f [x1;x2;...;xn] [y1;y2;...;yn] c1

evaluates to f xn yn (... (f x2 y2 (f x1 y1 c1))...). For example,

reduce (fun x y z -> x * y + z) [1;2;3] [0;1;2] 0

evaluates to 8.
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Problem 16 Consider the following propositional formula:

type formula =

| True

| False

| Not of formula

| AndAlso of formula * formula

| OrElse of formula * formula

| Imply of formula * formula

| Equal of exp * exp

and exp =

| Num of int

| Plus of exp * exp

| Minus of exp * exp

Write the function
eval : formula -> bool

that computes the truth value of a given formula. For example,

eval (Imply (Imply (True,False), True))

evaluates to true, and

eval (Equal (Num 1, Plus (Num 1, Num 2)))

evaluates to false.

Problem 17 Natural numbers are defined inductively:

0

n

n+ 1

In OCaml, the inductive definition can be defined by the following a data type:

type nat = ZERO | SUCC of nat

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two
functions that add and multiply natural numbers:

natadd : nat -> nat -> nat

natmul : nat -> nat -> nat

For example,

# let two = SUCC (SUCC ZERO);;

val two : nat = SUCC (SUCC ZERO)

# let three = SUCC (SUCC (SUCC ZERO));;

val three : nat = SUCC (SUCC (SUCC ZERO))

# natmul two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))

# natadd two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))
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Problem 18 Consider the inductive definition of binary trees:

n n ∈ Z
t

(t,nil)
t

(nil, t)

t1 t2
(t1, t2)

which can be defined in OCaml as follows:

type btree =

| Leaf of int

| Left of btree

| Right of btree

| LeftRight of btree * btree

For example, binary tree ((1, 2),nil) is represented by

Left (LeftRight (Leaf 1, Leaf 2))

Write a function that exchanges the left and right subtrees all the ways down.
For example, mirroring the tree ((1, 2),nil) produces (nil, (2, 1)); that is,

mirror (Left (LeftRight (Leaf 1, Leaf 2)))

evaluates to
Right (LeftRight (Leaf 2, Leaf 1)).

Problem 19 Write a function

diff : aexp * string -> aexp

that differentiates the given algebraic expression with respect to the variable
given as the second argument. The algebraic expression aexp is defined as fol-
lows:

type aexp =

| Const of int

| Var of string

| Power of string * int

| Times of aexp list

| Sum of aexp list

For example, x2 + 2x+ 1 is represented by

Sum [Power ("x", 2); Times [Const 2; Var "x"]; Const 1]

and differentiating it (w.r.t. “x”) gives 2x+ 2, which can be represented by

Sum [Times [Const 2; Var "x"]; Const 2]

Note that the representation of 2x+ 2 in aexp is not unique. For instance, the
following also represents 2x+ 2:
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Sum

[Times [Const 2; Power ("x", 1)];

Sum

[Times [Const 0; Var "x"];

Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Const 0]]]];

Const 0]

Problem 20 Consider the following expressions:

type exp = X

| INT of int

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| SIGMA of exp * exp * exp

Implement a calculator for the expressions:

calculator : exp -> int

For instance,
10∑
x=1

(x ∗ x− 1)

is represented by

SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))

and evaluating it should give 375.
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