OCaml Exercises

Hakjoo Oh
Korea University

Problem 1 The Fibonacci numbers can be defined as follows:

$$
f i b(n)= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ \operatorname{fib}(n-1)+f i b(n-2) & \text { otherwise }\end{cases}
$$

Write in OCaml the function

$$
\text { fib: int }->\text { int }
$$

that computes the Fibonacci numbers.
Problem 2 Write a function
prime: int -> bool
that checks whether a number is prime (n is prime if and only if n is its own smallest divisor except for 1). For example,

$$
\begin{aligned}
& \text { prime } 2=\text { true } \\
& \text { prime } 3=\text { true } \\
& \text { prime } 4=\text { false } \\
& \text { prime } 17=\text { true }
\end{aligned}
$$

Problem 3 Define the function binarize:
binarize: int -> int list
that converts a decimal number to its binary representation. For example,

```
binarize 2 = [1; 0]
binarize 3 = [1; 1]
binarize 8 = [1; 0; 0; 0]
binarize 17 = [1; 0; 0; 0; 1]
```

Problem 4 Write a function

$$
\text { sigma : (int -> int) -> int }->\text { int }->\text { int }
$$

such that sigma f a b computes

$$
\sum_{i=a}^{b} f(i)
$$

For instance,

$$
\text { sigma (fun x -> x) } 110
$$

evaulates to 55 and

```
            sigma (fun x -> x*x) 1 7
```

evaluates to 140 .
Problem 5 Define the function iter:

```
iter : int * (int -> int) -> (int -> int)
```

such that

$$
\text { iter }(n, f)=\underbrace{f \circ \cdots \circ f}_{n} \text {. }
$$

When $n=0$, iter (n, f) is defined to be the identity function. When $n>0$, iter (n, f) is the function that applies f repeatedly n times. For instance,

$$
\text { iter (} n \text {, fun } \mathrm{x}->2+\mathrm{x} \text {) } 0
$$

evaluates to $2 \times n$.
Problem 6 Write a function
double: ('a -> 'a) -> 'a -> 'a
that takes a function of one argument as argument and returns a function that applies the original function twice. For example,

```
# let inc x = x + 1;;
val inc : int -> int = <fun>
# let mul x = x * 2;;
val mul : int -> int = <fun>
# (double inc) 1;;
- : int = 3
# (double inc) 2;;
- : int = 4
# ((double double) inc) 0;;
- : int = 4
# ((double (double double)) inc) 5;;
- : int = 21
# (double mul) 1;;
- : int = 4
# (double double) mul 2;;
- : int = 32
```

Problem 7 Write a higher-order function

```
forall : ('a -> bool) -> 'a list -> bool
```

which decides if all elements of a list satisfy a predicate. For example,

$$
\text { forall (fun } x->x \bmod 2=0)[1 ; 2 ; 3]
$$

evaluates to false while

$$
\text { forall (fun x -> x > 5) }[7 ; 8 ; 9]
$$

is true.
Problem 8 Write a function

```
suml: int list list -> int
```

which takes a list of lists of integers and sums the integers included in all the lists. For example, suml [[1;2;3]; []; [-1; 5; 2]; [7]] produces 19.

Problem 9 Write two functions

$$
\begin{aligned}
& \max : \text { int list }->\text { int } \\
& \text { min: int list }->\text { int }
\end{aligned}
$$

that find maximum and minimum elements of a given list, respectively. For example max $[1 ; 3 ; 5 ; 2]$ should evaluate to 5 and min $[1 ; 3 ; 2]$ should be 1 .

Problem 10 Write the function filter

```
filter : ('a -> bool) -> 'a list -> 'a list
```

Given a predicate p and a list l, filter plreturns all the elements of the list l that satisfy the predicate p . The order of the elements in the input list is preserved. For example,

```
# filter (fun x -> x mod 2 = 0) [1;2;3;4;5];;
- : int list = [2; 4]
# filter (fun x -> x > 0) [5;-1;0;2;-9];;
- : int list = [5; 2]
# filter (fun x -> x * x > 25) [1;2;3;4;5;6;7;8];;
- : int list = [6; 7; 8]
```

Problem 11 Write a function drop:

```
drop : 'a list -> int -> 'a list
```

that takes a list l and an integer n to take all but the first n elements of l. For example,

```
drop [1;2;3;4;5] 2 = [3; 4; 5]
drop [1;2] 3 = []
drop ["C"; "Java"; "OCaml"] 2 = ["OCaml"]
```

Problem 12 Write a higher-order function

```
dropWhile : ('a -> bool) -> 'a list -> 'a list
```

which removes elements of a list while they satisfy a predicate. For example,

$$
\text { dropWhile (fun } x \rightarrow x \bmod 2=0)[2 ; 4 ; 7 ; 9]
$$

evaluates to $[7 ; 9]$ and

```
dropWhile (fun x-> x > 5) [1;3;7]
```

evaluates to $[1 ; 3 ; 7]$.
Problem 13 Write a function

```
zip: int list * int list -> int list
```

which receives two lists a and b as arguments and combines the two lists by inserting the i th element of a before the i th element of b. If b does not have an i th element, append the excess elements of a in order. For example,

```
# zip ([1;3;5],[2;4;6]);;
- : int list = [1; 2; 3; 4; 5; 6]
# zip ([1;3],[2;4;6;8]);;
- : int list = [1; 2; 3; 4; 6; 8]
# zip ([1;3;5;7],[2;4]);;
- : int list = [1; 2; 3; 4; 5; 7]
```

Problem 14 Write a function

```
unzip: ('a * 'b) list -> 'a list * 'b list
```

that converts a list of pairs to a pair of lists. For example,

```
unzip [(1,"one");(2,"two");(3,"three")] = ([1;2;3],["one";"two";"three"])
```

Problem 15 Write a function

```
reduce : ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c
```

Given a function f of type ' $\mathrm{a} \rightarrow \mathrm{D}^{\prime} \mathrm{b} \rightarrow \mathrm{D}^{\prime} \mathrm{c}->$ ' c , the expression
reduce f [x1;x2;...;xn] [y1;y2;...;yn] c1
evaluates to $\mathrm{f} x \mathrm{xn} \mathrm{yn}(\ldots$ (f x 2 y 2 (f x 1 y 1 c 1$)$)...). For example,

```
    reduce (fun x y z -> x * y + z) [1;2;3] [0;1;2] 0
```

evaluates to 8 .

Problem 16 Consider the following propositional formula:

```
type formula =
    | True
    | False
    | Not of formula
    | AndAlso of formula * formula
    | OrElse of formula * formula
    | Imply of formula * formula
    | Equal of exp * exp
and exp =
    | Num of int
    | Plus of exp * exp
    | Minus of exp * exp
```

Write the function
eval : formula -> bool
that computes the truth value of a given formula. For example,

```
eval (Imply (Imply (True,False), True))
```

evaluates to true, and
eval (Equal (Num 1, Plus (Num 1, Num 2)))
evaluates to false.
Problem 17 Natural numbers are defined inductively:

$$
\overline{0} \quad \frac{n}{n+1}
$$

In OCaml, the inductive definition can be defined by the following a data type:

```
type nat = ZERO | SUCC of nat
```

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two functions that add and multiply natural numbers:

```
natadd : nat -> nat -> nat
natmul : nat -> nat -> nat
```

For example,

```
# let two = SUCC (SUCC ZERO);;
val two : nat = SUCC (SUCC ZERO)
# let three = SUCC (SUCC (SUCC ZERO));;
val three : nat = SUCC (SUCC (SUCC ZERO))
# natmul two three;;
- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))
# natadd two three;;
- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))
```

Problem 18 Consider the inductive definition of binary trees:

$$
\bar{n} n \in \mathbb{Z} \quad \frac{t}{(t, \text { nil })} \quad \frac{t}{(\text { nil }, t)} \quad \frac{t_{1} t_{2}}{\left(t_{1}, t_{2}\right)}
$$

which can be defined in OCaml as follows:

```
type btree =
    | Leaf of int
    | Left of btree
    | Right of btree
    | LeftRight of btree * btree
```

For example, binary tree $((1,2)$, nil $)$ is represented by

```
Left (LeftRight (Leaf 1, Leaf 2))
```

Write a function that exchanges the left and right subtrees all the ways down.
For example, mirroring the tree $((1,2)$, nil) produces (nil, $(2,1))$; that is,

```
mirror (Left (LeftRight (Leaf 1, Leaf 2)))
```

evaluates to
Right (LeftRight (Leaf 2, Leaf 1)).
Problem 19 Write a function

```
diff : aexp * string -> aexp
```

that differentiates the given algebraic expression with respect to the variable given as the second argument. The algebraic expression aexp is defined as follows:

```
type aexp =
    | Const of int
    | Var of string
    | Power of string * int
    | Times of aexp list
    | Sum of aexp list
```

For example, $x^{2}+2 x+1$ is represented by

```
Sum [Power ("x", 2); Times [Const 2; Var "x"]; Const 1]
```

and differentiating it (w.r.t. "x") gives $2 x+2$, which can be represented by

```
Sum [Times [Const 2; Var "x"]; Const 2]
```

Note that the representation of $2 x+2$ in aexp is not unique. For instance, the following also represents $2 x+2$:

```
Sum
    [Times [Const 2; Power ("x", 1)];
    Sum
            [Times [Const 0; Var "x"];
            Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Const 0]]]];
    Const 0]
```

Problem 20 Consider the following expressions:

```
type exp = X
    INT of int
    | ADD of exp * exp
    | SUB of exp * exp
    | MUL of exp * exp
    | DIV of exp * exp
    | SIGMA of exp * exp * exp
```

Implement a calculator for the expressions:
calculator : exp -> int

For instance,

$$
\sum_{x=1}^{10}(x * x-1)
$$

is represented by
SIGMA (INT 1, INT 10, SUB(MUL(X, X), INT 1))
and evaluating it should give 375 .

