COSE212: Programming Languages

Lecture 5 - Design and Implementation of PLs
 (1) Expressions

Hakjoo Oh
2022 Fall

Plan

- Part 1 (Preliminaries): inductive definition, basics of functional programming, recursive and higher-order programming
- Part 2 (Basic concepts): syntax, semantics, naming, binding, scoping, environment, interpreters, states, side-effects, store, reference, mutable variables, parameter passing
- Part 3 (Advanced concepts): type system, typing rules, type checking, soundness/completeness, automatic type inference, polymorphic type system, lambda calculus, program synthesis

Goal

- We will learn essential concepts of programming languages by designing and implementing a programming language, called ML--:
- Expressions
- Procedures
- States
- Types
- Design decisions of programming languages
- Expression/statement-oriented
- Static/dynamic scoping
- Eager/lazy evaluation
- Explicit/implicit reference
- Static/dynamic type system
- Sound/unsound type system
- Manual/automatic type inference
- ...

Designing a Programming Language

We need to specify syntax and semantics of the language:

- Syntax: how to write programs
- Semantics: the meaning of the programs

Both are formally specified by inductive definitions.

Let: Our First Language

Syntax

$P \rightarrow$	\boldsymbol{E}
$E \rightarrow$	n
\|	\boldsymbol{x}
\|	$\boldsymbol{E}+\boldsymbol{E}$
\|	$\boldsymbol{E}-\boldsymbol{E}$
\|	iszero \boldsymbol{E}
\|	if \boldsymbol{E} then \boldsymbol{E} else \boldsymbol{E}
I	let $\boldsymbol{x}=\boldsymbol{E}$ in \boldsymbol{E}
\|	read

Examples

$$
\begin{aligned}
& \text { let } \mathrm{x}=1 \text { in } \mathrm{x}+2 \\
& \text { let } \mathrm{x}=1 \\
& \text { in } \begin{array}{l}
\text { let } \mathrm{y}=2 \\
\text { in } \mathrm{x}+\mathrm{y} \\
\text { let } \mathrm{x}= \\
\text { let } \mathrm{y}=2 \\
\text { in } \mathrm{y}+1 \\
\text { in } \mathrm{x}+3
\end{array} \\
& \text { let } \mathrm{x}=1 \\
& \text { in let } \mathrm{y}=2 \\
& \text { in let } \mathrm{x}=3 \\
& \text { in } \mathrm{x}+\mathrm{y}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { let } \mathrm{x}=1 \\
& \text { in let } \mathrm{y}=\begin{array}{l}
\text { let } \mathrm{x}=2 \\
\text { in } \mathrm{x}+\mathrm{x}
\end{array} \\
& \quad \text { in } \mathrm{x}+\mathrm{y} \\
& \text { let } \mathrm{x}=1 \\
& \text { in let } \mathrm{y}=2 \\
& \text { in if iszero }(\mathrm{x}-1) \text { then } \mathrm{y}-1 \text { else } \mathrm{y}+1 \\
& \text { let } \mathrm{x}=1 \\
& \text { in let } \mathrm{y}=\text { iszero } \mathrm{x} \\
& \text { in } \mathrm{x}+\mathrm{y}
\end{aligned}
$$

Values and Environments

To define the semantics, we need to define values and environments.

- The set of values that the language manipulates:
- $1+(2+3)$
- iszero 1, iszero (2-2)
- if iszero 1 then 2 else 3
- An environment is a variable-value mapping, which is needed to evaluate expressions with variables:
- x, y
- $x+1, x+(y-2)$
- let $x=$ read
in let $y=2$
in if zero x then y else x

Values and Environments

In Let, the set of values includes integers and booleans:

$$
v \in \operatorname{Val}=\mathbb{Z}+\text { Bool }
$$

and an environment is a function from variables to values:

$$
\rho \in E n v=\operatorname{Var} \rightarrow V a l
$$

Notations:

- []: the empty environment.
- $[\boldsymbol{x} \mapsto \boldsymbol{v}] \rho($ or $\rho[\boldsymbol{x} \mapsto \boldsymbol{v}])$: the extension of $\boldsymbol{\rho}$ where \boldsymbol{x} is bound to \boldsymbol{v} :

$$
([x \mapsto v] \rho)(y)= \begin{cases}v & \text { if } x=y \\ \rho(y) & \text { otherwise }\end{cases}
$$

For simplicity, we write $\left[\boldsymbol{x}_{1} \mapsto \boldsymbol{v}_{1}, \boldsymbol{x}_{2} \mapsto \boldsymbol{v}_{2}\right] \rho$ for the extension of ρ where $\boldsymbol{x}_{\boldsymbol{1}}$ is bound to $\boldsymbol{v}_{\boldsymbol{1}}, \boldsymbol{x}_{\mathbf{2}}$ to \boldsymbol{v}_{2} :

$$
\left[x_{1} \mapsto v_{1}, x_{2} \mapsto v_{2}\right] \rho=\left[x_{1} \mapsto v_{1}\right]\left(\left[x_{2} \mapsto v_{2}\right] \rho\right)
$$

Evaluation of Expressions

Given an environment ρ, an expression \boldsymbol{e} evaluates to a value \boldsymbol{v} :

$$
\rho \vdash e \Rightarrow v
$$

or does not evaluate to any value (i.e. e does not have semantics w.r.t ρ).

- [] $\vdash 1 \Rightarrow 1$
- $[x \mapsto 1] \vdash \mathrm{x}+1 \Rightarrow 2$
- [] \vdash read $\Rightarrow 3,[x \mapsto 1] \vdash$ read $\Rightarrow 5$
- $[\boldsymbol{x} \mapsto 0] \vdash$ let $\mathrm{y}=2$ in if iszero x then y else $\mathrm{x} \Rightarrow \mathbf{2}$
- iszero (iszero 3)
- if 1 then 2 else 3

Evaluation Rules

$$
\rho \vdash e \Rightarrow v
$$

$$
\overline{\rho \vdash n \Rightarrow n} \quad \overline{\rho \vdash x \Rightarrow \rho(x)}
$$

$$
\frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}} \quad \frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}-E_{2} \Rightarrow n_{1}-n_{2}}
$$

$$
\frac{\rho \vdash E \Rightarrow 0}{\rho \vdash \text { read } \Rightarrow n} \quad \frac{\rho \vdash E \Rightarrow n}{\rho \vdash \text { iszero } E \Rightarrow \text { true }} \quad \frac{\rho \vdash \text { iszero } E \Rightarrow \text { false }}{\rho \neq 0}
$$

$$
\frac{\rho \vdash E_{1} \Rightarrow \text { true } \quad \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v} \quad \frac{\rho \vdash E_{1} \Rightarrow \text { false } \quad \rho \vdash E_{3} \Rightarrow v}{\rho \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v}
$$

$$
\frac{\rho \vdash E_{1} \Rightarrow v_{1} \quad\left[x \mapsto v_{1}\right] \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \operatorname{let} x=E_{1} \text { in } E_{2} \Rightarrow v}
$$

Evaluation Rules

More precise interpretation of the evaluation rules:

- The inference rules define a set S of triples (ρ, e, v). For readability, the triple was written by $\rho \vdash e \Rightarrow \boldsymbol{v}$ in the rules.
- We say an expression e has semantics w.r.t. ρ iff there is a triple $(\rho, e, v) \in S$ for some value \boldsymbol{v}.
- That is, we say an expression e has semantics w.r.t. ρ iff we can derive $\boldsymbol{\rho} \vdash \boldsymbol{e} \Rightarrow \boldsymbol{v}$ for some value \boldsymbol{v} by applying the inference rules.
- We say an initial program \boldsymbol{e} has semantics if []$\vdash \boldsymbol{e} \Rightarrow \boldsymbol{v}$ for some \boldsymbol{v}.

Examples

$$
\frac{\overline{[] \vdash 1 \Rightarrow 1} \frac{\overline{[\mathrm{x} \mapsto 1] \vdash \mathrm{x} \Rightarrow 1} \quad \overline{[\mathrm{x} \mapsto 1] \vdash 2 \Rightarrow \mathbf{2}}}{[\mathrm{x} \mapsto 1] \vdash \mathrm{x}+2 \Rightarrow \mathbf{3}}}{[] \vdash \text { let } \mathrm{x}=1 \text { in } \mathrm{x}+2 \Rightarrow \mathbf{3}}
$$

Examples

$$
\begin{aligned}
& {[\mathrm{y} \mapsto 2, \mathrm{x} \mapsto 1] \vdash \mathrm{x} \Rightarrow 1} \\
& \text { [} \mathrm{y} \mapsto 2, \mathrm{x} \mapsto 1] \vdash \mathrm{y} \Rightarrow 2 \\
& {[\mathrm{x} \mapsto 1] \vdash 2 \Rightarrow 2 \quad[\mathrm{y} \mapsto 2, \mathrm{x} \mapsto 1] \vdash \mathrm{x}+\mathrm{y} \Rightarrow 3} \\
& \text { [] } \vdash 1 \Rightarrow 1 \\
& {[\mathrm{x} \mapsto 1] \vdash \text { let } \mathrm{y}=2 \text { in } \mathrm{x}+\mathrm{y} \Rightarrow 3} \\
& {[] \vdash \text { let } \mathrm{x}=1 \text { in let } \mathrm{y}=2 \text { in } \mathrm{x}+\mathrm{y} \Rightarrow 3}
\end{aligned}
$$

Examples

$$
\frac{[] \vdash 2 \Rightarrow \mathbf{2} \quad[\mathrm{y} \mapsto 2] \vdash \mathrm{y}+1 \Rightarrow \mathbf{3}}{\frac{[] \vdash \text { let } \mathrm{y}=2 \text { in } \mathrm{y}+1 \Rightarrow \mathbf{3}}{[] \vdash \text { let } \mathrm{x}=(\text { let } \mathrm{y}=2 \text { in } \mathrm{y}+1) \text { in } \mathrm{x}+3 \Rightarrow \mathbf{x}} \frac{[\mathrm{x} \mapsto \mathbf{3}] \vdash \mathrm{x} \Rightarrow \mathbf{3} \quad[\mathrm{x} \mapsto 3] \vdash 3 \Rightarrow \mathbf{3}}{[\mathrm{x} \mapsto 3] \vdash \mathrm{x}+3 \Rightarrow \mathbf{6}}}
$$

Examples

$$
\begin{aligned}
& \text { [} \mathrm{y} \mapsto 2, \mathrm{x} \mapsto 3 \text {] } \\
& \text { [y } \mapsto 2, \mathrm{x} \mapsto 3 \text {] } \\
& {[\mathrm{y} \mapsto 2, \mathrm{x} \mapsto 1] \vdash 3 \Rightarrow 3 \quad \overline{\mathrm{y} \mapsto 2, \mathrm{x} \mapsto 3] \vdash \mathrm{z}}} \\
& \frac{[] \vdash 1 \Rightarrow \mathbf{1} \frac{[\mathrm{x} \mapsto 1] \vdash 2 \Rightarrow \mathbf{2}}{[\mathrm{x} \mapsto \mathbf{1}] \vdash \text { let } \mathrm{y}=2 \text { in let } \mathrm{x}=3 \text { in } \mathrm{x}+\mathrm{y} \Rightarrow \mathbf{5}}}{[] \vdash \text { let } \mathrm{x}=1 \text { in let } \mathrm{y}=2 \text { in let } \mathrm{x}=3 \text { in } \mathrm{x}+\mathrm{y} \Rightarrow \mathbf{5}}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& {[\mathrm{x} \mapsto 2] \vdash \mathrm{x} \Rightarrow 2 \quad[\mathrm{x} \mapsto 2] \vdash \mathrm{x} \Rightarrow 2 \quad[\mathrm{y} \mapsto 4, \mathrm{x} \mapsto 1] \vdash \mathrm{x} \Rightarrow 1} \\
& {[\mathrm{x} \mapsto 2] \vdash \mathrm{x}+\mathrm{x} \Rightarrow 4} \\
& {[\mathrm{y} \mapsto 4, \mathrm{x} \mapsto 1] \vdash \mathrm{y} \Rightarrow 4} \\
& {[\mathrm{x} \mapsto 1] \vdash \text { let } \mathrm{x}=2 \text { in } \mathrm{x}+\mathrm{x} \Rightarrow 4 \quad[\mathrm{y} \mapsto 4, \mathrm{x} \mapsto 1] \vdash \mathrm{x}+\mathrm{y} \Rightarrow 5} \\
& {[\mathrm{x} \mapsto 1] \vdash \text { let } \mathrm{y}=(\text { let } \mathrm{x}=2 \text { in } \mathrm{x}+\mathrm{x}) \text { in } \mathrm{x}+\mathrm{y} \Rightarrow 5} \\
& {[] \vdash \text { let } \mathrm{x}=1 \text { in let } \mathrm{y}=(\text { let } \mathrm{x}=2 \text { in } \mathrm{x}+\mathrm{x} \text {) in } \mathrm{x}+\mathrm{y} \Rightarrow 5}
\end{aligned}
$$

Examples

When ρ is $[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 2$]:

$$
\begin{aligned}
& \underline{\rho \vdash \mathrm{x} \Rightarrow 1 \quad \rho \vdash 1 \Rightarrow 1}
\end{aligned}
$$

Implementation of the Language

Syntax definition in OCaml:

```
type program = exp
and exp =
    | CONST of int
    | VAR of var
    | ADD of exp * exp
    | SUB of exp * exp
    | READ
    | ISZERO of exp
    | IF of exp * exp * exp
    | LET of var * exp * exp
and var = string
```


Example

$$
\begin{aligned}
& \text { let } x=7 \\
& \text { in let } y=2 \\
& \text { in let } y=\begin{array}{l}
\text { let } x=x-1 \\
\\
\text { in } x-y
\end{array} \\
& \text { in }(x-8)-y
\end{aligned}
$$

LET ("x", CONST 7, LET ("y", CONST 2, LET ("y", LET ("x", SUB(VAR "x", CONST 1), SUB (VAR "x", VAR "y")), SUB (SUB (VAR "x", CONST 8), VAR "y"))))

Values and Environments

Values:

```
type value = Int of int | Bool of bool
```

Environments:

```
type env = (var * value) list
let empty_env = []
let extend_env (x,v) e = (x,v)::e
let rec apply_env x e =
match e with
    | [] -> raise (Failure ("variable " ^ x ~ " not found"))
    | (y,v)::tl -> if x = y then v else apply_env x tl
```


Evaluation Rules

```
let rec eval : exp -> env -> value
=fun exp env ->
    match exp with
    | CONST n -> Int n
    | VAR x -> apply_env env x
    | ADD (e1,e2) ->
        let v1 = eval e1 env in
        let v2 = eval e2 env in
        (match v1,v2 with
        | Int n1, Int n2 -> Int (n1 + n2)
        | _ -> raise (Failure "Type Error: non-numeric values"))
    | SUB (e1,e2) ->
        let v1 = eval e1 env in
        let v2 = eval e2 env in
            (match v1,v2 with
            | Int n1, Int n2 -> Int (n1 - n2)
            | _ -> raise (Failure "Type Error: non-numeric values"))
```


Implementation: Semantics

let rec eval : exp -> env -> value =fun exp env ->
| READ -> Int (read_int())
| ISZERO e ->
(match eval e env with
| Int n when $\mathrm{n}=0$-> Bool true
| _ -> Bool false)
| IF (e1,e2,e3) ->
(match eval e1 env with
| Bool true \rightarrow eval e2 env
| Bool false -> eval e3 env
| _ -> raise (Failure "Type Error: condition must be Bool type".
| LET (x,e1,e2) ->
let v1 = eval e1 env in
eval e2 (extend_env ($x, v 1$) env)

Interpreter

```
let run : program -> value
=fun pgm -> eval pgm empty_env
```

Examples:
\# let e1 = LET ("x", CONST 1, ADD (VAR "x", CONST 2)); ;
val e1 : exp = LET ("x", CONST 1, ADD (VAR "x", CONST 2))
\# run e1; ;

- : value = Int 3

Summary

We have designed and implemented our first programming language:

- key concepts: syntax, semantics, interpreter

