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A Fundamental Question

Programming languages look very different.
o C, C++, Java, OCaml, Haskell, Scala, JavaScript, etc
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Example: QuickSort in C

void swap(int* a, int* b) { int t = *a; *a = *b; *b = t; }

int partition (int arr[], int low, int high) {
int pivot = arrlhigh];
int i = (low - 1);

for (int j = low; j <= high- 1; j++) {
if (arr[jl <= pivot) {
i++;
swap(&arr[il, &arr[jl);
¥
}
swap(&arr[i + 1], &arr[highl);
return (i + 1);

}

void quickSort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

}
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Example: QuickSort in Haskell

quicksort [] = []
quicksort (x:xs) = quicksort ys ++ [x] ++ quicksort zs

where
ys = [a | a <= xs, a <=x]
zs = [b | b<-xs, b>x]
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A Fundamental Question

Are they different fundamentally? or Is there a core mechanism underlying
all programming languages?
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Syntactic Sugar

@ Syntactic sugar is syntax that makes a language “sweet”: it does not
add expressiveness but makes programs easier to read and write.

@ For example, we can “desugar” the let expression:

let # = E; in E» desgw (proc = E2) Ey

o Exercise) Desugar the program:

let x =1 in
let y = 2 in
X +y
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Syntactic Sugar

Q) Identify all syntactic sugars of the language:

E — n

x

E+F

E—F

iszero E

if F then F else FE
letx =F in E
letrec f(x) = E in E
proc x E

E FE
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Lambda Calculus (A-Calculus)

@ By removing all syntactic sugars from the language, we obtain a
minimal language, called lambda calculus:

e —> x variables
| Az.e abstraction
| ee application

Programming language = Lambda calculus 4+ Syntactic sugars
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Origins of Programming Languages and Computer

@ In 1935, Church developed A-calculus as a formal system for
mathematical logic and argued that any computable function on
natural numbers can be computed with A-calculus. Since then,
A-calculus became the model of programming languages.

@ In 1936, Turing independently developed Turing machine and argued
that any computable function on natural numbers can be computed
with the machine. Since then, Turing machine became the model of

computers.
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Church-Turing Thesis

@ A surprising fact is that the classes of A-calculus and Turing machines
can compute coincide even though they were developed independently.

@ Church and Turing proved that the classes of computable functions
defined by A-calculus and Turing machine are equivalent.

- THE TURINE MASHNINE @ -

e % w | I \UHU|!‘|‘H ITITLII]
| Az.e =
| ee

A function is A-computable if and only if Turing computable.

@ This equivalence has led mathematicians and computer scientists to
believe that these models are “universal’: A function is computable if
and only if A-computable if and only if Turing computable.
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A-Calculus is Everywhere

A-calculus had immense impacts on programming languages.

@ It has been the core of functional programming languages (e.g., Lisp,
ML, Haskell, Scala, etc).
@ Lambdas in other languages:

> Java8
(int n, int m) -> n + m
» C++11
[1@int %, int y) { return x + y; }
» Python

(lambda x, y: x + y)

» JavaScript
function (a, b) { return a + b }
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Syntax of Lambda Calculus

e = x variables
|  Az.e abstraction
| ee application

@ Examples:
T y z

Az.x Az.y AT AY.x
Ty (Az.x) =z T Ay.z ((Az.x) Ax.x)

@ Conventions when writing A-expressions:

@ Application associates to the left, e.g.,, st u = (s t) u
© The body of an abstraction extends as far to the right as possible, e.g.,
Az Ay.x y x = Az.(Ay.((z y) x))
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Bound and Free Variables

@ An occurrence of variable x is said to be bound when it occurs inside
Az, otherwise said to be free.

Ay.(z y)

Ax.x

Az Az Ax.(y z)

(Az.x) x

vV vyVvYyy

@ Expressions without free variables is said to be closed expressions or
combinators.
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Evaluation

To evaluate A-expression e,

@ Find a sub-expression of the form:
(Azx.eq) e2

Expressions of this form are called “redex” (reducible expression).

@ Rewrite the expression by substituting the ea for every free
occurrence of x in ey:

(Azx.e1) e2 — [ — ez]er

This rewriting is called 3-reduction

Repeat the above two steps until there are no redexes.
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Evaluation

° A\z.x

o (Ax.x)y

o (Az.xy)

o (Ax.xy) 2

o (Az.(Ay.@)) =

o (Axz.(Ax.x)) =

o (Az.(Ay.x)) y

o (Az.(Ay.xz v)) (A\z.x) =

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 15 /30



Substitution

The definition of [z — e1]ea:

[t — e = e

[t —ely =y
[ — e1](Ay.e2) = Az. [z — e1]([y — z]e2) (new z)
[x — e1](ez e3) = ([ — e1]ez [x — ei]es)
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Evaluation Strategy

@ In a lambda expression, multiple redexes may exist. Which redex to
reduce next?

Az.x (Axz.x (Az.(Az.x) 2)) = id (id (Az.id 2))

redexes:
id (id (Az.id z))
id (id (Az.id z))
id (id (Az.id 2))

@ Evaluation strategies:

» Normal order
» Call-by-name
» Call-by-value
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Normal order strategy

Reduce the leftmost, outermost redex first:

id (id (Az.id 2))
id (Az.id 2))
Az.id z

Az.z

Ll

The evaluation is deterministic (i.e., partial function).
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Call-by-name strategy

Follow the normal order reduction, not allowing reductions inside
abstractions:
id (id (Az.id 2))
— id (Az.id 2))
— Az.d z

N

The call-by-name strategy is non-strict (or lazy) in that it evaluates
arguments that are actually used.
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Call-by-value strategy

Reduce the outermost redex whose right-hand side has a value (a term
that cannot be reduced any further):

id (id (Az.id 2))
— id (Az.id 2))
— Az.id z

N

The call-by-name strategy is strict in that it always evaluates arguments,
whether or not they are used in the body.
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Compiling to Lambda Calculus

Consider the source language:

E —

true

false

n

x

E+F

iszero B

if F then F else E
letx =F in E
letrec f(x) = E in E
proc x E

E FE

Define the translation procedure from E to A-calculus.
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Compiling to Lambda Calculus

‘E: the translation result of E in )\—calculus‘

true = At.Af.t
false = XtAf.f
0 = As.\z.z
1 = As.Az.(s 2)
n = As.Az.(s"™ z)
T = x
Ei+E;, = (An.dm.As.Az.m s (n s z)) Ey Ey
iszero E = (Am.m (Az.false) true) E
if By then Bz else B3 = E; E; E3
let * = F7 in By = ()\il)&) &
letrec f(x) = E1in B2 = let f =Y (Af.Ax.E;1) in E;
procx E = Az.E
E,E;, = E, B
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Correctness of Compilation

Theorem
For any expression E,
[E] = [E]

where [E] denotes the value that results from evaluating E.
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Examples: Booleans

if true then O elsel = trueO1
(AtAft) 01
0

As.Az.z

Note that

[if true then 0 else 1] = [if true then 0 else 1]
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Exercises

Define the translation for the boolean operations:
] El and E2 =
(] E1 or E2 =

e not ¥ =
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Example: Numerals

[

+
N
I

(AnAmAs.Azzm s (nsz)) 12
As.Az.2s (1s z)

As.Az.2 s (As.Az.(s 2) s 2)
As.Az.2 s (s 2)

As Az (As.Az.(s (s 2))) s (s 2)
As.Az.s (s (s 2))

3
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Exercises

Define the translation for the boolean operations:
@ succ ¥ =
o pred B =
o Ei x FEy =

Ex __
o Ei? =
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Recursion
@ For example, the factorial function
f(n) =ifn=0then Lelse n* f(n —1)
is encoded by
fact = Y(Af.An.if n = 0 then 1 else n x f(n — 1))
where Y is the Y-combinator (or fixed point combinator):
Y =Af.(Ax.f (x x))(Ax.f (z x))

@ Then, fact n computes n!.

@ Recursive functions can be encoded by composing non-recursive
functions!
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Recursion

Let FF = Af.An.if n = 0 then 1 else n * f(n — 1) and
G = \z.F(x x).

fact 1

=(Y F)1

(Af-(Qz.f(z ) (Az.f(z ))) F) 1

GG)1

(F(GG))1

(An.if n =0thenlelsen* (G G)(n—1)) 1

if 1l=0then1lelsel* (G G)(1—1))

if false then 1 else 1 * (G G)(1 — 1))

1% (G G)(1—1)

1% (F (G G)(1-1)

1% (An.ifn=0thenlelse n*x (G G)(n —1))(1 —1)
1%if(1—1)=0thenlelse(1-1)*x(GG)((1—1)—1)
=1x%x1
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Summary

‘ Programming language = Lambda calculus 4+ Syntactic sugars

@ A-calculus is a minimal programming language.

» Syntax: e > x | Az.e | ee
» Semantics: B-reduction

@ Yet, A-calculus is Turing-complete.

= @ THE TURINE WACHINE @ -

e > x
| Az.e =
| ee
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