COSE212: Programming Languages

Lecture 17 — Lambda Calculus
(Origin of Programming Languages)

Hakjoo Oh
2022 Fall

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 1/30



A Fundamental Question

Programming languages look very different.
o C, C++, Java, OCaml, Haskell, Scala, JavaScript, etc

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 2/30



Example: QuickSort in C

void swap(int* a, int* b) { int t = *a; *a = *b; *b = t; }

int partition (int arr[], int low, int high) {
int pivot = arrlhigh];
int i = (low - 1);

for (int j = low; j <= high- 1; j++) {
if (arr[jl <= pivot) {
i++;
swap(&arr[il, &arr[jl);
¥
}
swap(&arr[i + 1], &arr[highl);
return (i + 1);

}

void quickSort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

}

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 3/30



Example: QuickSort in Haskell

quicksort [] = []
quicksort (x:xs) = quicksort ys ++ [x] ++ quicksort zs

where
ys = [a | a <= xs, a <=x]
zs = [b | b<-xs, b>x]

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 4/30



A Fundamental Question

Are they different fundamentally? or Is there a core mechanism underlying
all programming languages?

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 5/30



Syntactic Sugar

@ Syntactic sugar is syntax that makes a language “sweet”: it does not
add expressiveness but makes programs easier to read and write.

@ For example, we can “desugar” the let expression:

let # = E; in E» desgw (proc = E2) Ey

o Exercise) Desugar the program:

let x =1 in
let y = 2 in
X +y

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 6/30



Syntactic Sugar

Q) Identify all syntactic sugars of the language:

E — n

x

E+F

E—F

iszero E

if F then F else FE
letx =F in E
letrec f(x) = E in E
proc x E

E FE

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022

7/30



Lambda Calculus (A-Calculus)

@ By removing all syntactic sugars from the language, we obtain a
minimal language, called lambda calculus:

e —> x variables
| Az.e abstraction
| ee application

Programming language = Lambda calculus 4+ Syntactic sugars

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 8/30



Origins of Programming Languages and Computer

@ In 1935, Church developed A-calculus as a formal system for
mathematical logic and argued that any computable function on
natural numbers can be computed with A-calculus. Since then,
A-calculus became the model of programming languages.

@ In 1936, Turing independently developed Turing machine and argued
that any computable function on natural numbers can be computed
with the machine. Since then, Turing machine became the model of

computers.

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 9/30



Church-Turing Thesis

@ A surprising fact is that the classes of A-calculus and Turing machines
can compute coincide even though they were developed independently.

@ Church and Turing proved that the classes of computable functions
defined by A-calculus and Turing machine are equivalent.

- THE TURINE MASHNINE @ -

e % w | I \UHU|!‘|‘H ITITLII]
| Az.e =
| ee

A function is A-computable if and only if Turing computable.

@ This equivalence has led mathematicians and computer scientists to
believe that these models are “universal’: A function is computable if
and only if A-computable if and only if Turing computable.

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 10 /30



A-Calculus is Everywhere

A-calculus had immense impacts on programming languages.

@ It has been the core of functional programming languages (e.g., Lisp,
ML, Haskell, Scala, etc).
@ Lambdas in other languages:

> Java8
(int n, int m) -> n + m
» C++11
[1@int %, int y) { return x + y; }
» Python

(lambda x, y: x + y)

» JavaScript
function (a, b) { return a + b }

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 11/30



Syntax of Lambda Calculus

e = x variables
|  Az.e abstraction
| ee application

@ Examples:
T y z

Az.x Az.y AT AY.x
Ty (Az.x) =z T Ay.z ((Az.x) Ax.x)

@ Conventions when writing A-expressions:

@ Application associates to the left, e.g.,, st u = (s t) u
© The body of an abstraction extends as far to the right as possible, e.g.,
Az Ay.x y x = Az.(Ay.((z y) x))

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 12 /30



Bound and Free Variables

@ An occurrence of variable x is said to be bound when it occurs inside
Az, otherwise said to be free.

Ay.(z y)

Ax.x

Az Az Ax.(y z)

(Az.x) x

vV vyVvYyy

@ Expressions without free variables is said to be closed expressions or
combinators.

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 13 /30



Evaluation

To evaluate A-expression e,

@ Find a sub-expression of the form:
(Azx.eq) e2

Expressions of this form are called “redex” (reducible expression).

@ Rewrite the expression by substituting the ea for every free
occurrence of x in ey:

(Azx.e1) e2 — [ — ez]er

This rewriting is called 3-reduction

Repeat the above two steps until there are no redexes.

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 14 /30



Evaluation

° A\z.x

o (Ax.x)y

o (Az.xy)

o (Ax.xy) 2

o (Az.(Ay.@)) =

o (Axz.(Ax.x)) =

o (Az.(Ay.x)) y

o (Az.(Ay.xz v)) (A\z.x) =

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 15 /30



Substitution

The definition of [z — e1]ea:

[t — e = e

[t —ely =y
[ — e1](Ay.e2) = Az. [z — e1]([y — z]e2) (new z)
[x — e1](ez e3) = ([ — e1]ez [x — ei]es)

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 16 /30



Evaluation Strategy

@ In a lambda expression, multiple redexes may exist. Which redex to
reduce next?

Az.x (Axz.x (Az.(Az.x) 2)) = id (id (Az.id 2))

redexes:
id (id (Az.id z))
id (id (Az.id z))
id (id (Az.id 2))

@ Evaluation strategies:

» Normal order
» Call-by-name
» Call-by-value

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 17 /30



Normal order strategy

Reduce the leftmost, outermost redex first:

id (id (Az.id 2))
id (Az.id 2))
Az.id z

Az.z

Ll

The evaluation is deterministic (i.e., partial function).

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 18 /30



Call-by-name strategy

Follow the normal order reduction, not allowing reductions inside
abstractions:
id (id (Az.id 2))
— id (Az.id 2))
— Az.d z

N

The call-by-name strategy is non-strict (or lazy) in that it evaluates
arguments that are actually used.

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 19 /30



Call-by-value strategy

Reduce the outermost redex whose right-hand side has a value (a term
that cannot be reduced any further):

id (id (Az.id 2))
— id (Az.id 2))
— Az.id z

N

The call-by-name strategy is strict in that it always evaluates arguments,
whether or not they are used in the body.

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 20/30



Compiling to Lambda Calculus

Consider the source language:

E —

true

false

n

x

E+F

iszero B

if F then F else E
letx =F in E
letrec f(x) = E in E
proc x E

E FE

Define the translation procedure from E to A-calculus.

Hakjoo Oh COSE212 2022 Fall, Lecture 17

October 17, 2022

21/30



Compiling to Lambda Calculus

‘E: the translation result of E in )\—calculus‘

true = At.Af.t
false = XtAf.f
0 = As.\z.z
1 = As.Az.(s 2)
n = As.Az.(s"™ z)
T = x
Ei+E;, = (An.dm.As.Az.m s (n s z)) Ey Ey
iszero E = (Am.m (Az.false) true) E
if By then Bz else B3 = E; E; E3
let * = F7 in By = ()\il)&) &
letrec f(x) = E1in B2 = let f =Y (Af.Ax.E;1) in E;
procx E = Az.E
E,E;, = E, B

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 22/30



Correctness of Compilation

Theorem
For any expression E,
[E] = [E]

where [E] denotes the value that results from evaluating E.

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 23/30



Examples: Booleans

if true then O elsel = trueO1
(AtAft) 01
0

As.Az.z

Note that

[if true then 0 else 1] = [if true then 0 else 1]

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 24 /30



Exercises

Define the translation for the boolean operations:
] El and E2 =
(] E1 or E2 =

e not ¥ =

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 25/30



Example: Numerals

[

+
N
I

(AnAmAs.Azzm s (nsz)) 12
As.Az.2s (1s z)

As.Az.2 s (As.Az.(s 2) s 2)
As.Az.2 s (s 2)

As Az (As.Az.(s (s 2))) s (s 2)
As.Az.s (s (s 2))

3

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 26 /30



Exercises

Define the translation for the boolean operations:
@ succ ¥ =
o pred B =
o Ei x FEy =

Ex __
o Ei? =

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 27/30



Recursion
@ For example, the factorial function
f(n) =ifn=0then Lelse n* f(n —1)
is encoded by
fact = Y(Af.An.if n = 0 then 1 else n x f(n — 1))
where Y is the Y-combinator (or fixed point combinator):
Y =Af.(Ax.f (x x))(Ax.f (z x))

@ Then, fact n computes n!.

@ Recursive functions can be encoded by composing non-recursive
functions!

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 28 /30



Recursion

Let FF = Af.An.if n = 0 then 1 else n * f(n — 1) and
G = \z.F(x x).

fact 1

=(Y F)1

(Af-(Qz.f(z ) (Az.f(z ))) F) 1

GG)1

(F(GG))1

(An.if n =0thenlelsen* (G G)(n—1)) 1

if 1l=0then1lelsel* (G G)(1—1))

if false then 1 else 1 * (G G)(1 — 1))

1% (G G)(1—1)

1% (F (G G)(1-1)

1% (An.ifn=0thenlelse n*x (G G)(n —1))(1 —1)
1%if(1—1)=0thenlelse(1-1)*x(GG)((1—1)—1)
=1x%x1

COSE212 2022 Fall, Lecture 17 October 17, 2022 29/30



Summary

‘ Programming language = Lambda calculus 4+ Syntactic sugars

@ A-calculus is a minimal programming language.

» Syntax: e > x | Az.e | ee
» Semantics: B-reduction

@ Yet, A-calculus is Turing-complete.

= @ THE TURINE WACHINE @ -

e > x
| Az.e =
| ee

Hakjoo Oh COSE212 2022 Fall, Lecture 17 October 17, 2022 30/30



