COSE 212: Programming Languages

Lecture 10a
Introduction to Program Analysis

Hakjoo Oh
2022 Fall

2ZEL0 2F =X

o ATEQ0] QB ALS| BE QOH0f M HHABES FA|

nght Capital Says Tradmg Glitch Cost It $440 Million Tesla in fatal California crash was on Up to270 women may have died after $25 million in BTC, ETH stolen in
T ANIEL POFPER Autopilot breast cancer screening IT error dForce hacking
Sy Siote Spranct Suall A Whs S5 31 March 2018 Health secretary says computer errors led to 450,000 missed) ‘] o

screenings in England since 2009
Have v

The decentralized finance (DeFi) community has been

SEH|2ISW(2020)

o AZEQ0 ZHOR QIS ASIZHN HIBS ¢ 1.7% L|Z 55

cas

606 $1.7 3.6 billion 268 years

software fails trillion affected users in downtime

Software fail watch (5th edition). 2017

<l
KHl

R~

E

O @O
UPDH
R (&)
Y

®eHG

§

§

§

<0 A1
1ol fol
0 T
H ~
g ME
o O
Jo O
~ I
Ko <D
N o

s
nd N

eeﬂwereum

EECEE A

d

o S

S O

O o

y— S, —_

S O Sl o Kr

A & R0
1 &= uo

3

=]

=

SH
SE[7] Al

/' e
~
25| =
A o
| 7|5
o= &

© 0l & K

o = =

N, ,/g | |_._A.A|_.w_ ﬂ&ﬁ ﬂﬁ H__AA|
r % "_M_ "_Mo W
T @
R
S S

o Wl & R
2 qf = to -
< o o <

Microsoft

-
S0
@

O

-
=
o

o
T
U

L

ZRd =R lE =R

Formal
Verification
Static
Analysis

Confidence

Symbolic
Execution
Fuzzing /
Testing

Cost

Alan Turing

o 2ol =13 FAMT| MO| EXNSICIH Halting problemO| ZEICT,
&—ﬂ halt
program — | (program; true+|) — M
%_ run
S forever

o LAHQCF (approximation/abstraction)

: under-approximation

HH 24 over-approximation

o LAHQCF (approximation/abstraction)

: under-approximation

HH 24 over-approximation

ZAHQCF (approximation/abstraction)

approximation

: under-

HH 24 over-approximation

Ats

= o

HIAE /EHY /7|2 o

(testing / fuzzing / symbolic execution)

=
M 2

(static analysis)

Ats

ra

T2 45

(program verification)

Error Zone

i0 o

il o—

i2 o~
i3 o

Error Zone

HIAT /HE &

int double (int v) {
return 2xv;

¥

void testme(int x, int y) {
z := double (y);
if (z==x) {

if (x>y+10) {
Error;
I3
I3
}

|. Error-triggering test?

2. Probability of the error?
(assume 0 < x,y < 10,000)

|0

cf) I3 L4

® Blackbox fuzzing
® Whitebox fuzzing

® Greybox fuzzing

Greybox

Seed input — — Mutated inputs

Fuzzing

Add inputs that

. . . increase coverage
List of “interesting” J

seeds

MEA HE Al

® AFL (https://github.com/google/AFL)

® (OSS-Fuzz (https://github.com/google/oss-fuzz)

— Upstream project

~ 3. _Sync and

S buldiom gyjlder

~~__(Cloud Build)
google/oss-fuzz ~ GCS bucket

5. Download

4. Upload and fuzz

- a ";, - o — ClusterFuzz

1. Write fuzzers

6. File bugs,

‘ 2. Commit build configs
Verify fixes

8. Fix bugs
=== Track deadlines
TT7T Sheriffbot

Developer
Issue tracker (monorail)

Google 0SS-Fuzz

Microsoft

DOI:10.1145/3363824

Reviewing software testing techniques for
finding security vulnerabilities.

Fuzzing:
Hack,

Art, and
Science

FUZZING, OR FUZZ TESTING, is the process of finding
security vulnerabilities in input-parsing code by
repeatedly testing the parser with modified, or fuzzed,
inputs.® Since the early 2000s, fuzzing has become a
mainstream practice in assessing software security.
Thousands of security vulnerabilities have been
found while fuzzing all kinds of software applications
for processing documents, images, sounds, videos,
network packets, Web pages, among others.

These applications must deal with untrusted inputs

70 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL.63 | NO.2

encoded in complex data formats. For
example, the Microsoft Windows oper-
ating system supports over 360 file for-
mats and includes millions of lines of
code just to handle all of these.

Most of the code to process such
files and packets evolved over the last
20+ years. It is large, complex, and
written in C/C++ for performance
reasons. If an attacker could trigger
a buffer-overflow bug in one of these
applications, s/he could corrupt the
memory of the application and pos-
sibly hijack its execution to run ma-
licious code (elevation-of-privilege
attack), or steal internal information
(information-disclosure attack), or
simply crash the application (denial-
of-service attack).’ Such attacks might
be launched by tricking the victim
into opening a single malicious docu-
ment, image, or Web page. If you are
reading this article on an electronic
device, you are using a PDF and JPEG
parser in order to see Figure 1.

Buffer-overflows are examples of
security vulnerabilities: they are pro-
gramming errors, or bugs, and typi-
cally triggered only in specific hard-
to-find corner cases. In contrast, an
exploitisa piece of code which triggers
a security vulnerability and then takes
advantage of it for malicious purposes.
When exploitable, a security vulner-
ability is like an unintended backdoor
in a software application that lets an
attacker enter the victim’s device.

There are approximately three main
ways to detect security vulnerabilities
in software.

Static program analyzers are tools
that automatically inspect code and

key insights

® Fuzzing means automatic test generation
and execution with the goal of finding
security vulnerabilities.

Over the last two decades, fuzzing has
become a mainstay in software security.
Thousands of security vulnerabilities in
all kinds of software have been found
using fuzzing.

If you develop software that may process
untrusted inputs and have never used
fuzzing, you probably should.

12

https://github.com/google/AFL
https://github.com/google/oss-fuzz

),
c
O
N
&
O
ud
.
)

i0,i4 o

il,i5 e—

i2,i6 e~
i3,i7,i8 &~

),
c
O
N
&
O
C
C
)

13

int double (int v) {
return 2xv;

¥

void testme(int x, int y) {

z := double (y);

if (z==x) {
if (x>y+10) {
Error;
} else { 5 ..}

¥
¥

|4

int double (int v) {
return 2xv;

}

void testme(int x, int y) {

3
z := double (y);

2
if (z==x) {
3
if (x>y+10) {
4 Error;
} else { 5 ..}
}

6}

|4

int double (int v) {
return 2xv;

}

void testme(int x, int y) {

3
z := double (y);

2
if (z==x) {
3
if (x>y+10) {
4 Error;
} else { 5 ..}
}

6}

|4

int double (int v) {
return 2xv;

}

void testme(int x, int y) {

3
z := double (y);

2
if (z==x) {
3
if (x>y+10) {
4 Error;
} else { 5 ..}

}
6 }

|4

int double (int v) {
return 2xv;

}

void testme(int x, int y) {

3
z := double (y);

2
if (z==x) {
3
if (x>y+10) {
4 Error;
} else { 5 ..}
¥
6}

pc:2f=aAa> [+ 10

|4

int double (int v) {
return 2xv;

}

void testme(int x, int y) {

3
z := double (y);

2
if (z==x) {
3
if (x>y+10) {
4 Error;
} else { 5 ..}

}
6 }

|4

7=

Benchmarks Versions

Error Types

Bug-Triggering Inputs

8.1" Non-termination K1!1000100100111110¢(
vim Abnormal-termination H:w>>""'\ [press ‘Enter’]
>7 Segmentation fault =ipI\-9~qO0gw
Non-termination v(ipaprq&T$T
4.2.1% Memory-exhaustion '+E_Q$h+w$8==++$6E8#"
gawk 3.0.3 Abnormal-termination 'f[J[ICICICyJ1*/#['
N Non-termination '$gPE2A=-E-2"27+$="":/2/#H[""
3.1* Abnormal-termination '\ (\)\1*x?x?\ | \Wx\TWx'
grep Segmentation fault "NODNTAR@AAN 2\ TH\+%\?!
59 Segmentation fault "oAARON AN\ TR
Non-termination "\ ({FFHEEN) R\ R\ TR+
sed 1.17 Segmentation fault "{:};:C;b"

See “Concolic Testing with Adaptively Changing Search Heuristics. FSE 2019”

|5

vagrant@ubuntu-bionic: $ grep --version

grep (GNU grep) 3.1

Copyright (C) 2017 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
This 1s free software: you are free to change and redistribute 1it.

There 1s NO WARRANTY, to the extent permitted by law.

Written by Mike Haertel and others, see <http://git.sv.gnu.org/cgit/grep.git/tree/AUTHORS>.

vagrant@ubuntu-bionic: $ time grep "\QO\NI*FZF2N\W*\1W*'
grep:. regexec.c:1344: pop_fail_stack: Assertion "num >= @' failed.
Aborted (core dumped)

real Om@.0@74s
user 0m@.001s
sys ©m@.000s

vagrant@ubuntu-bionic: $ time grep "\QO\\IAX¥@F\?\1*\+*\?'
Segmentation fault (core dumped)

real Oml@.975s
user 0ml@.o672s
sys @0m@.239s

Article development led by dLTIJUBLE
queue.acm.org

SAGE has had a remarkable
impact at Microsoft.

| BY PATRICE GODEFROID, MICHAEL Y. LEVIN, AND DAVID MOLNAR

SAGE:

Whitebox
Fuzzing for

Security
Testing

MOST COMMUNICATIONS READERS might think of
“program verification research” as mostly theoretical
with little impact on the world at large. Think again.
If you are reading these lines on a PC running some
form of Windows (like over 93% of PC users—that is,
more than one billion people), then you have been
affected by this line of work—without knowing it,
which is precisely the way we want it to be.

Every second Tuesday of every month, also known
as “Patch Tuesday,” Microsoft releases a list of
security bulletins and associated security patches to
be deployed on hundreds of millions of machines
worldwide. Each security bulletin costs Microsoft

40 COMMUNICATIONS OF THE ACM MARCH 2012 VOL. 55

and its users millions of dollars. If a
monthly security update costs you
$0.001 (one tenth of one cent) in just
electricity or loss of productivity, then
this number multiplied by one bil-
lion people is $1 million. Of course, if
malware were spreading on your ma-
chine, possibly leaking some of your
private data, then that might cost you
much more than $0.001. This is why
we strongly encourage you to apply
those pesky security updates.

Many security vulnerabilities are a
result of programming errors in code
for parsing files and packets that are
transmitted over the Internet. For ex-
ample, Microsoft Windows includes
parsers for hundreds of file formats.

If you are reading this article on a
computer, then the picture shown in
Figure 1 is displayed on your screen
after a jpg parser (typically part of
your operating system) has read the
image data, decoded it, created new
data structures with the decoded data,
and passed those to the graphics card
in your computer. If the code imple-
menting that jpg parser contains a
bug such as a buffer overflow that can
be triggered by a corrupted jpg image,
then the execution of this jpg parser
on your computer could potentially be
hijacked to execute some other code,
possibly malicious and hidden in the
jpg data itself.

This is just one example of a pos-
sible security vulnerability and at-
tack scenario. The security bugs dis-
cussed throughout the rest of this
article are mostly buffer overflows.

Hunting for “Million-Dollar” Bugs
Today, hackers find security vulnera-
bilities in software products using two
primary methods. The first is code in-
spection of binaries (with a good dis-
assembler, binary code is like source
code).

The second is blackbox fuzzing,
a form of blackbox random testing,
which randomly mutates well-formed
program inputs and then tests the
program with those modified inputs,*
hoping to trigger a bug such as a buf-

&x BE Al

DO0I:10.1145/2093548.2093564

Symbolic Execution for Software Testing in Practice —
Preliminary Assessment

Cristian Cadar Patrice Godefroid Sarfraz Khurshid Corina S. Pasareanu~
Imperial College London Microsoft Research U. Texas at Austin CMU/NASA Ames
c.cadar@imperial.ac.uk pg@microsoft.com khurshid@ece.utexas.edu corina.s.pasareanu®@nasa.gov
Koushik Sen Nikolai Tillmann Willem Visser
U.C. Berkeley Microsoft Research Stellenbosch University
ksen@eecs.berkeley.edu nikolait@microsoft.com visserw@sun.ac.za
ABSTRACT Symbolic execution is now the underlying technique of

We present results for the “Impact Project Focus Area” on
the topic of symbolic execution as used in software testing.
Symbolic execution is a program analysis technique intro-
duced in the 70s that has received renewed interest in recent
years, due to algorithmic advances and increased availability
of computational power and constraint solving technology.
We review classical symbolic execution and some modern
extensions such as generalized symbolic execution and dy-
namic test generation. We also give a preliminary assess-
ment of the use in academia, research labs, and industry.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Symbolic execution

General Terms
Reliability

Keywords

Generalized symbolic execution, dynamic test generation

1. INTRODUCTION

The ACM-SIGSOFT Impact Project is documenting the
impact that software engineering research has had on soft-
ware development practice. In this paper, we present pre-
liminary results for documenting the impact of research in
symbolic execution for automated software testing. Sym-
bolic execution is a program analysis technique that was
introduced in the 70s [8, 15,31, 35,46], and that has found
renewed interest in recent years [9,12,13,28,29,32,33,40,42,
43,50-52,56,57).

*We thank Matt Dwyer for his advice

(© 2011 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.

ICSE’11, May 21-28, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

several popular testing tools, many of them open-source:
NASA’s Symbolic (Java) PathFinder', UIUC’s CUTE and
jCUTE?, Stanford’s KLEE®, UC Berkeley’s CREST* and
BitBlaze®, etc. Symbolic execution tools are now used in in-
dustrial practice at Microsoft (Pex®, SAGE [29], YOGI” and
PREfix [10]), IBM (Apollo [2]), NASA and Fujitsu (Sym-
bolic PathFinder), and also form a key part of the com-
mercial testing tool suites from Parasoft and other compa-
nies [60].

Although we acknowledge that the impact of symbolic ex-
ecution in software practice is still limited, we believe that
the explosion of work in this area over the past years makes
for an interesting story about the increasing impact of sym-
bolic execution since it was first introduced in the 1970s.
Note that this paper is not meant to provide a comprehen-
sive survey of symbolic execution techniques; such surveys
can be found elsewhere [19,44,49]. Instead, we focus here
on a few modern symbolic execution techniques that have
shown promise to impact software testing in practice.

Software testing is the most commonly used technique for
validating the quality of software, but it is typically a mostly
manual process that accounts for a large fraction of software
development and maintenance. Symbolic execution is one of
the many techniques that can be used to automate software
testing by automatically generating test cases that achieve
high coverage of program executions.

Symbolic execution is a program analysis technique that
executes programs with symbolic rather than concrete in-
puts and maintains a path condition that is updated when-
ever a branch instruction is executed, to encode the con-
straints on the inputs that reach that program point. Test
generation is performed by solving the collected constraints
using a constraint solver. Symbolic execution can also be
used for bug finding, where it checks for run-time errors or
assertion violations and it generates test inputs that trigger
those errors.

The original approaches to symbolic execution [8,15,31,35,

1http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/
jpf-symbc

“http://osl.cs.uiuc.edu/ ksen/cute/
Shttp://klee.1llvm.org/
“http://code.google.com/p/crest/
Shttp://bitblaze.cs.berkeley.edu/
Shttp://research.microsoft.com/en-us/projects/pex/
"http://research.microsoft.com/en-us/projects/yogi/

AlS
A

-0

9

(abstraction)

),
c
O
N
&
O
ud
.
)

Error Zone

18

AlS
A

-0

9

(abstraction)

),
c
O
N
&
O
ud
.
),

Error Zone

18

30X 124+ 11 X9 =7

19

S

vold £

y:

A

=
&II_I'___I

(1nt x)

assert (y %

|

{

D ==

x * 12 + 9 * 11;
) ;

20

N

I

zero pos

|
\L/

neg

N
N

DO0I1:10.1145/3338112

Key lessons for designing static analyses tools
deployed to find bugs in hundreds of millions
of lines of code.

BY DINO DISTEFANO, MANUEL FAHNDRICH,
FRANCESCO LOGO0ZZO0, AND PETER W. O'HEARN

Scaling Static
Analyses
at Facebook

|— Infer

STATIC ANALYSIS TOOLS are programs that examine, and
attempt to draw conclusions about, the source of other
programs without running them. At Facebook, we
have been investing in advanced static analysis tools
that employ reasoning techniques similar to those
from program verification. The tools we describe in
this article (Infer and Zoncolan) target issues related
to crashes and to the security of our services, they
perform sometimes complex reasoning spanning
many procedures or files, and they are integrated into
engineering workflows in a way that attempts to bring
value while minimizing friction.

These tools run on code modifications, participating
as bots during the code review process. Infer targets
our mobile apps as well as our backend C++ code,
codebases with 10s of millions of lines; it has seen
over 100 thousand reported issues fixed by developers
before code reaches production. Zoncolan targets the
100-million lines of Hack code, and is additionally

&x BE Al

integrated in the workflow used by se-
curity engineers. It has led to thousands
of fixes of security and privacy bugs, out-
performing any other detection method
used at Facebook for such vulnerabili-
ties. We will describe the human and
technical challenges encountered and
lessons we have learned in developing
and deploying these analyses.

There has been a tremendous
amount of work on static analysis,
both in industry and academia, and we
will not attempt to survey that material
here. Rather, we present our rationale
for, and results from, using techniques
similar to ones that might be encoun-
tered at the edge of the research litera-
ture, not only simple techniques that
are much easier to make scale. Our
goal is to complement other reports
on industrial static analysis and formal
methods,"*'*” and we hope that such
perspectives can provide input both to
future research and to further indus-
trial use of static analysis.

Next, we discuss the three dimen-
sions that drive our work: bugs that
matter, people, and actioned/missed
bugs. The remainder of the article de-
scribes our experience developing and
deploying the analyses, their impact,
and the techniques that underpin our
tools.

Context for Static

Analysis at Facebook

Bugs that Matter. We use static analysis to
prevent bugs that would affect our prod-
ucts, and we rely on our engineers’ judg-
ment as well as data from production to
tell us the bugs that matter the most.

key insights

m Ad d static lysis t |
performing deep reasoning about
source code can scale to large
industrial codebases, for example, with
100-million LOC.

Static ly hould strike a bal
between missed bugs (false negatives)
and un-actioned reports (false positives).

m A “diff time” deployment, where issues
are given to developers promptly as part
of code review, is important to catching
bugs early and getting high fix rates.

DOI:10.1145/3188720

For a static analysis project to succeed,
developers must feel they benefit from
and enjoy using it.

BY CAITLIN SADOWSKI, EDWARD AFTANDILIAN, ALEX EAGLE,
LIAM MILLER-CUSHON, AND CIERA JASPAN

Lessons

from Building
Static Analysis
Tools at Google

SOFTWARE BUGS cOsT developers and software
companies a great deal of time and money. For example,
in 2014, a bug in a widely used SSL implementation
(“goto fail”) caused it to accept invalid SSL certificates,*
and a bug related to date formatting caused a large-scale
Twitter outage.” Such bugs are often statically detectable
and are, in fact, obvious upon reading the code or
documentation yet still make it into production software.

Previous work has reported on experience applying
bug-detection tools to production software.®*”>
Although there are many such success stories for
developers using static analysis tools, there are also
reasons engineers do not always use static analysis
tools or ignore their warnings,*”?** including:

29222222222

Not integrated. The tool is not inte-
grated into the developer’s workflow or
takes too long to run;

Not actionable. The warnings are not
actionable;

Not trustworthy. Users do not trust
the results due to, say, false positives;

Not manifest in practice. The report-
ed bug is theoretically possible, but the
problem does not actually manifest in
practice;

key insights

B Static analysis authors should focus on
the developer and listen to their feedback.

m Careful developer workflow integration
is key for static analysis tool adoption.

m Static analysis tools can scale by
crowdsourcing analysis development.

MEA HE Al

WWDC (Apple Worldwide Developers Conferece) 2021

.I Developer Discover Develop Distribute Support Account Q

Videos Collections ~ Topics All Videos

< More Videos

| & solar System B solar system ios Any i0S Device (arm64) Analyze Succeeded | Today at 10:20 AM
A © & DB M TransNeptunianObject

Buildtime (1) JETLELTY & Solar System Shared Model Classes) M TransNeptunianObiject) () -positionAtDate:

B 4. nil returned from a method that is expected to return a non-null value ¢
v [@) solar System iOS 1 issue (1]

v [Memory error }

~ @ nil returned from a method that is
expected to return a non-null value - (nonnull SolarSystemPoint *)positionAtDate:(NSDate *)date {
TransNeptunianObject.m TransNegtunianObject *object = nil; 8 1. 'object initialized to nil
£ 'object" initialized to nil switch gself.shape) {
£ 'regularPositionAtDate:' not called case :
because the receiver is nil .
object = s
& 'position’ initialized to nil ol
- nil returned from a method that is !
expected to return a non-null value

chse I
object
break;
default
break;
2
CSolarSystemPoim *position = [object :datel; 2 B 3.'position' initialized to...
I return position; 4. nil returned from a method that is expected to return a non-null value
}

Overview Transcript

Detect bugs early with the static analyzer

Discover how Xcode can automatically track down infinite loops, unused code, and other issues before you
even run your app. Learn how, with a single click, Xcode can analyze your project to discover security
issues, logical bugs, and other hard-to-spot errors in Objective-C, C, and C++. We'll show you how to use
the static analyzer to save you time investigating bug reports and improve your app's overall quality.

https://developer.apple.com/videos/play/wwdc2021/10202/

24

),
c
O
N
&
O
ud
.
)

Error Zone

v Fogm A F appor <

25

=
o O

04

%EH'@/SMT(PA%I))

T2 SHY MG =alAloR B

=| & 9| satisfiability 0155 T

iy

(counterexample)

26

int f(bool a) {
X =0;y=0;
1f (a) {
X =1;
}
1f (a) {
y = 1;
}

assert (x ==

G| x|

Verification Condition:
((anXx)v (-anA-=xX) A

ﬁ> (Ca Ay v (-a A -y A

y)

~(X == y)

27

G| x|

int f(bool a) {

Xx=0;y=0; Verification Condition:
if (a) { ((anx)v (-an-x)) A
X = 1: :i> (Cany)v(=an-y) A
h -(X == y)
1t (a) {
y = 1;
1 @ SMT solver: unsatisfiable!

assert (x == y)

27

int fCa, b) {
X =0;y=0;
1f (a) {
X = 1;
}
1t (b) {
y = 1;
}

assert (x ==

0,

G| x|

Verification Condition:
((anXx)v (-anA-=xX) A

—— > (b Ay v (=ba-y)a

y)

~(X == y)

28

int fCa, b) {
X =0;y=0;
1f (a) {
X = 1;
}
1t (b) {
y = 1;
}

assert (x ==

0,

G| x|

Verification Condition:
((anXx)v (-anA-=xX) A

—— > (b Ay v (=ba-y)a

y)

@

~(X == y)

SMT solver:
satisfiable when a=1 and b=0

28

a0 BHH
— = L

HIE
L " 1

1 = 0;
] = 0;
while
(1 < 10) {
1++;
J++;
ks
assert (1-3==0)

Ad
o

Al
=

(Invariant)

29

HIE
L " 1

1 = 0;
] = 0;
while @(1==7)
(1 < 10) {
1++;
J++;
}
assert (1-3==0)

==IT
— = L

Ad
o

Al
=

(Invariant)

29

ol

= o
HISE = 9% (Invariant)

| D5H5| Ol 28 MEIS (1>=0,) >= 0, ==
1 = 0; true,) 7H2C] ZHof| MZst= Zo| L
] = 0; -
while @(i==7)
(1 < 10) {

1++;

J++;
}

assert (1-3==0)

bool BubbleSort (int a[]) {

}

int[] a := ag
for (inti:=la|l| —1;2>0;7:=7—1){
for (intj:=0;53<43:=3+1){
if (a[j] > als +1]) {
int t := alj];
int alj] := alj + 1];
int a[g + 1] :=¢;
}
}
}

return a;

@pre : T
@post : sorted(rv, 0, |rv| — 1)
bool BubbleSort (int a[]) {
int[] @ := ao
-1 <1< |al
@QL; | A partitioned(a,0,2,7+ 1, |a| — 1)
A sorted(a, i, |a| — 1)
for (inti:=|a|l—1;7>0;,42:=7—1) {
1<i<]|al AN0<j<3i
A partitioned(a,0,%,7 4+ 1, |a| — 1)
A partitioned(a, 0,5 — 1,7,7)
A sorted(a, i, |a| — 1)
for (intj:=0;4 <4 j:=75+1){
if (a[j] > alj +1]) {

int t := alj];

int al[j] := alj + 1];

int a[j + 1] :=¢;

t
}

}

return a;

}

QLo

sorted(a,l,u) < Vi,j.l<i<j<u— ali < alj]

30

MAX BHE Atel: Dafny

Dafny

A Prompt2.dfy" - Microsoft Visual Studio Preview - Experimental Instance m Y & P - & X
file [Edit View Project Build Debug Team JTools Test Dafny Apalyze Window Help Rustan Leino
o - B-2@88 - - b Attach.. ~ | 5% . g 2l
L p mpt2.dfy* <
g 1 method BinarySearch(a: array<int>, key: int) returns (r: int)

2 requires forall i,7 :: @ <=1 < j < a.Length ==> a[i] <= a[j]

3 ensures @ <= r ==> r < a.Length & & a[r] == key

4 ensures r < @ ==> forall i :: @ <= 1 < a.Length ==> a[i] != key

5 EI{

6 var lo, hi := 0, a.Length;

7 while lo < hi

8 invariant @ <= lo <= hi <= a.lLength

9 invariant forall i :: @ <= 1 < lo ==> a[i] != key I
10 invariant forall i :: hi <= i < a.Length ==> a[i] != key
11 { 1
12 var mid := (lo + hi) / 2;
13 if key < a[mid] {
14 hi := mid;

Cr— (© 0€ron | [OWarings | @ OMemages |] B metiserse - e —

" Code Description Project File Line Suppression State

31

MEH BE At

Code-Level Model Checking in the
Software Development Workflow

Nathan Chong Byron Cook Konstantinos Kallas
Amazon Amazon University of Pennsylvania
UCL
Kareem Khazem Felipe R. Monteiro Daniel Schwartz-Narbonne
Amazon Amazon Amazon
Serdar Tasiran Michael Tautschnig Mark R. Tuttle
Amazon Amazon Amazon

Queen Mary University of London

ABSTRACT

This experience report describes a style of applying symbolic model
checking developed over the course of four years at Amazon Web
Services (AWS). Lessons learned are drawn from proving properties
of numerous C-based systems, e.g., custom hypervisors, encryp-
tion code, boot loaders, and an IoT operating system. Using our
methodology, we find that we can prove the correctness of industrial
low-level C-based systems with reasonable effort and predictability.
Furthermore, AWS developers are increasingly writing their own
formal specifications. All proofs discussed in this paper are publicly
available on GitHub.

CCS CONCEPTS

o Software and its engineering — Formal software verification;
Model checking; Correctness; ® Theory of computation — Program
reasoning.

KEYWORDS
Continuous Integration, Model Checking, Memory Safety.

ACM Reference Format:

Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Felipe R.
Monteiro, Daniel Schwartz-Narbonne, Serdar Tasiran, Michael Tautschnig,
and Mark R. Tuttle. 2020. Code-Level Model Checking in the Software
Development Workflow. In Software Engineering in Practice (ICSE-SEIP
'20), May 23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3377813.3381347

1 INTRODUCTION

This is a report on making code-level proof via model checking
a routine part of the software development workflow in a large
industrial organization. Formal verification of source code can have
a significant positive impact on the quality of industrial code. In

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE-SEIP "20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7123-0/20/05.

https://doi.org/10.1145/3377813.3381347

particular, formal specification of code provides precise, machine-
checked documentation for developers and consumers of a code
base. They improve code quality by ensuring that the program’s
implementation reflects the developer’s intent. Unlike testing, which
can only validate code against a set of concrete inputs, formal proof
can assure that the code is both secure and correct for all possible
inputs.

Unfortunately, rapid proof development is difficult in cases where
proofs are written by a separate specialized team and not the software
developers themselves. The developer writing a piece of code has
an internal mental model of their code that explains why, and under
what conditions, it is correct. However, this model typically remains
known only to the developer. At best, it may be partially captured
through informal code comments and design documents. As a result,
the proof team must spend significant effort to reconstruct the formal
specification of the code they are verifying. This slows the process
of developing proofs.

Over the course of four years developing code-level proofs in
Amazon Web Services (AWS), we have developed a proof methodol-
ogy that allows us to produce proofs with reasonable and predictable
effort. For example, using these techniques, one full-time verification
engineer and two interns were able to specify and verify 171 entry
points over 9 key modules in the AWS C Common library over a
period of 24 weeks (see Sec. 3.2 for a more detailed description of
this library). All specifications, proofs, and related artifacts (such as
continuous integration reports), described in this paper have been
integrated into the main AWS C Common repository on GitHub, and
are publicly available at https://github.com/awslabs/aws-c-common)/.

1.1 Methodology

Our methodology has four key elements, all of which focus on com-
municating with the development team using artifacts that fit their
existing development practices. We find that of the many different
ways we have approached verification engagements, this combina-
tion of techniques has most deeply involved software developers in
the proof creation and maintenance process. In particular, developers
have begun to write formal functional specifications for code as they
develop it. Initially, this involved the development team asking the
verification team to assist them in writing specifications for new

1 https://github.com/awslabs/aws-c-common

kL

Issues Found

100 ~

oo
e}
I

40
20 |

Feb ’19

Apr’19

Jun ’19

Aug’19

Figure 1: Cumulative number of LOC proven.

80 |
70 +
60
50 +
40
30 |-
20 +
10 +

Oct ’19

Feb ’19

Apr’19

Jun’19

Aug’19

Figure 2: Cumulative number of issues found.

Oct ’19

Table 1: Severity and root cause of issues found.

Root cause

1ssues

Severity

High

Medium

Low

Integer overflow
Null-pointer deref.
Functional
Memory safety

10 (12%)
57 (69%)
11 (13%)

5(6%)

2

0
0
0

8
14

0
43

N

Total

83

50
(60%)

32

Automatic

Testing/
Fuzzing

Symbolic
Execution

Static
Analysis

Formal
Verification

Sound

Complete

33

AZENH &4 ¢ @Korea Univ.
® Members: |0 PhD and 5 MS students

® Research areas: programming languages (PL), software engineering
(SE), software security

® program analysis and testing

® program synthesis and repair

® Publication: top-venues in PL, SE, and Security: (last 5 years)
e PL:POPL('22),PLDI(’20),O0PSLA("I7a,17b, 18a,18b,19,20)
e SE:ICSE(17,18,19,20,21°22a,22b), FSE(’18;19,20,21,22),ASE(|8), ISSTA("20)
® Security: IEEE S&P(’17,20), USENIX Security('21)

http://prl.korea.ac.kr

http://prl.korea.ac.kr

