
Lecture 10a
Introduction to Program Analysis

Hakjoo Oh
2022 Fall

COSE 212: Programming Languages

소프트웨어 오류 문제
• 소프트웨어 오류는 사회 모든 영역에서 발생하는 추세

2

• 소프트웨어 결함으로 인한 사회경제적 비용은 연 1.7조 달러로 추정

Software fail watch (5th edition). 2017 2

소프트웨어 오류 문제
• 소프트웨어 오류는 사회 모든 영역에서 발생하는 추세

자율주행SW(2017)금융거래SW(2012) 의료SW(2018)

• 소프트웨어 결함으로 인한 사회경제적 비용은 연 1.7조 달러로 추정

(Software fail watch (5th edition). 2017)

블록체인SW(2020)

유력 답안: 오류 자동 검출 & 수정 기술

3

오류 검출 기술 오류 수정 기술

…

정적 분석

동적 분석

자동 검증

기계 학습

…

보안 오류

기능 오류

구문 오류

의미 오류

…

정적 분석

동적 분석

코드 합성

기계 학습

…

4

• 소프트웨어의 실행 성질을 엄밀히 확인하는 기술

• 정적 분석: 실행 전 확인 (요약 해석, 모델 체킹 등)

• 동적 분석: 실행 중 확인 (퍼징, 기호 실행 등)

• 소프트웨어 산업에서 적극적으로 활용되기 시작

Static Program Analysis

Technology for “Software MRI”

I Detect software bugs statically and automatically
I static: by analyzing program text, before run/ship/embed
I automatic: sw is analyzed by sw (“static analyzer”)

I Next-generation software testing technology
I finding bugs early / full automation / all bugs found

I Being widely used in sw industry

code
Safety proved

Bugs found

프로그램 분석
Static Program Analysis

Technology for “Software MRI”

I Detect software bugs statically and automatically
I static: by analyzing program text, before run/ship/embed
I automatic: sw is analyzed by sw (“static analyzer”)

I Next-generation software testing technology
I finding bugs early / full automation / all bugs found

I Being widely used in sw industry

프로그램 분석 기술 분류

5

Fuzzing /
Testing

Symbolic
Execution

Static
Analysis

Formal
Verification

Cost

C
on

fid
en

ce

완벽한 프로그램 분석은 불가능

6

Alan Turing

• Halting problem: 주어진 프로그램이 항상 종료하는가?

impossible!

• 완벽한 프로그램 분석기 M이 존재한다면 Halting problem이 풀린다.

프로그램 분석 공통 원리

7

error zone

error zone
…

실제 실행

• 근사/요약 (approximation/abstraction)

• 동적 분석: under-approximation

• 정적 분석: over-approximation

프로그램 분석 공통 원리

7

error zone

error zone
…

실제 실행

동적 분석

• 근사/요약 (approximation/abstraction)

• 동적 분석: under-approximation

• 정적 분석: over-approximation

프로그램 분석 공통 원리

7

error zone

error zone
…

실제 실행

동적 분석

정적 분석

• 근사/요약 (approximation/abstraction)

• 동적 분석: under-approximation

• 정적 분석: over-approximation

프로그램 분석 기법

8

안전

자동 완전

프로그램 분석 기법

8

안전

자동 완전
테스팅 / 퍼징 / 기호실행

(testing / fuzzing / symbolic execution)

프로그램 분석 기법

8

안전

자동 완전

정적 분석
(static analysis)

프로그램 분석 기법

8

안전

자동 완전

프로그램 검증
(program verification)

테스팅 / 퍼징 원리

9

error zone

error zone

• 프로그램의 개별 실행 경로들을 일일이 추적

i0

i1
i2
i3

테스팅 / 퍼징 원리

10

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 }
 }
}

2. Probability of the error?
 (assume 0 ≤ x,y ≤ 10,000)

1. Error-triggering test?

cf) 퍼징 방식

11

• Blackbox fuzzing

• Whitebox fuzzing

• Greybox fuzzing

Greybox
FuzzingSeed input Mutated inputs

List of “interesting”
seeds

Add inputs that
increase coverage

산업체 적용 사례
• AFL (https://github.com/google/AFL)

• OSS-Fuzz (https://github.com/google/oss-fuzz)

12

Google OSS-Fuzz

Microsoft

https://github.com/google/AFL
https://github.com/google/oss-fuzz

기호 실행 원리

• 동일한 실행 경로를 가지는 입력들을 한번에 실행

13

error zone

error zone

i0, i4

i1, i5
i2, i6

i3, i7, i8

기호 실행 원리

14

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 } else { …}
 }
}

x: , y:
pc:

α β
true

1

2

3

4

6

1

5

기호 실행 원리

14

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 } else { …}
 }
}

x: , y:
pc:

α β
true

1

2

3

4

6

1

x: , y: , z:
pc:

α β 2β
true2

5

기호 실행 원리

14

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 } else { …}
 }
}

x: , y:
pc:

α β
true

1

2

3

4

6

1

x: , y: , z:
pc:

α β 2β
true2

x: , y: , z:
pc:
α β 2β

2β = α3

5

기호 실행 원리

14

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 } else { …}
 }
}

x: , y:
pc:

α β
true

1

2

3

4

6

1

x: , y: , z:
pc:

α β 2β
true2

x: , y: , z:
pc:
α β 2β

2β = α3 x: , y: , z:
pc:
α β 2β

2β ≠ α6

5

기호 실행 원리

14

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 } else { …}
 }
}

x: , y:
pc:

α β
true

1

2

3

4

6

1

x: , y: , z:
pc:

α β 2β
true2

x: , y: , z:
pc:
α β 2β

2β = α3 x: , y: , z:
pc:
α β 2β

2β ≠ α6

5

x: , y: , z:
pc:

α β 2β
2β = α ∧ α > β + 104

기호 실행 원리

14

int double (int v) {
 return 2*v;
}

void testme(int x, int y) {

 z := double (y);

 if (z==x) {

 if (x>y+10) {
 Error;
 } else { …}
 }
}

x: , y:
pc:

α β
true

1

2

3

4

6

1

x: , y: , z:
pc:

α β 2β
true2

x: , y: , z:
pc:
α β 2β

2β = α3 x: , y: , z:
pc:
α β 2β

2β ≠ α6

5

x: , y: , z:
pc:

α β 2β
2β = α ∧ α > β + 104 x: , y: , z:

pc:
α β 2β

2β = α ∧ α ≤ β + 105

기호 실행 적용 사례

15

See “Concolic Testing with Adaptively Changing Search Heuristics. FSE 2019” 

16

vagrant@ubuntu-bionic:~/swtest$ grep --version
grep (GNU grep) 3.1
Copyright (C) 2017 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Written by Mike Haertel and others, see <http://git.sv.gnu.org/cgit/grep.git/tree/AUTHORS>.

vagrant@ubuntu-bionic:~/swtest$ time grep '\(\)\1*?*?\|\W*\1W*'
grep: regexec.c:1344: pop_fail_stack: Assertion `num >= 0' failed.
Aborted (core dumped)

real 0m0.074s
user 0m0.001s
sys 0m0.000s

vagrant@ubuntu-bionic:~/swtest$ time grep '\(\)\1^*@*\?\1*\+*\?'
Segmentation fault (core dumped)

real 0m10.975s
user 0m10.672s
sys 0m0.239s

산업체 적용 사례

17

40 COMMUNICATIONS OF THE ACM | MARCH 2012 | VOL. 55 | NO. 3

practice

M OST C O M M U N I C AT I O N S READ ER S might think of
“program verification research” as mostly theoretical
with little impact on the world at large. Think again.
If you are reading these lines on a PC running some
form of Windows (like over 93% of PC users—that is,
more than one billion people), then you have been
affected by this line of work—without knowing it,
which is precisely the way we want it to be.

Every second Tuesday of every month, also known
as “Patch Tuesday,” Microsoft releases a list of
security bulletins and associated security patches to
be deployed on hundreds of millions of machines
worldwide. Each security bulletin costs Microsoft

and its users millions of dollars. If a
monthly security update costs you
$0.001 (one tenth of one cent) in just
electricity or loss of productivity, then
this number multiplied by one bil-
lion people is $1 million. Of course, if
malware were spreading on your ma-
chine, possibly leaking some of your
private data, then that might cost you
much more than $0.001. This is why
we strongly encourage you to apply
those pesky security updates.

Many security vulnerabilities are a
result of programming errors in code
for parsing files and packets that are
transmitted over the Internet. For ex-
ample, Microsoft Windows includes
parsers for hundreds of file formats.

If you are reading this article on a
computer, then the picture shown in
Figure 1 is displayed on your screen
after a jpg parser (typically part of
your operating system) has read the
image data, decoded it, created new
data structures with the decoded data,
and passed those to the graphics card
in your computer. If the code imple-
menting that jpg parser contains a
bug such as a buffer overflow that can
be triggered by a corrupted jpg image,
then the execution of this jpg parser
on your computer could potentially be
hijacked to execute some other code,
possibly malicious and hidden in the
jpg data itself.

This is just one example of a pos-
sible security vulnerability and at-
tack scenario. The security bugs dis-
cussed throughout the rest of this
article are mostly buffer overflows.

Hunting for “Million-Dollar” Bugs
Today, hackers find security vulnera-
bilities in software products using two
primary methods. The first is code in-
spection of binaries (with a good dis-
assembler, binary code is like source
code).

The second is blackbox fuzzing,
a form of blackbox random testing,
which randomly mutates well-formed
program inputs and then tests the
program with those modified inputs,3
hoping to trigger a bug such as a buf-

SAGE:
Whitebox
Fuzzing for
Security
Testing

DOI:10.1145/2093548.2093564

 Article development led by
 queue.acm.org

SAGE has had a remarkable
impact at Microsoft.

BY PATRICE GODEFROID, MICHAEL Y. LEVIN, AND DAVID MOLNAR

Symbolic Execution for Software Testing in Practice –
Preliminary Assessment

Cristian Cadar
Imperial College London

c.cadar@imperial.ac.uk

Patrice Godefroid
Microsoft Research
pg@microsoft.com

Sarfraz Khurshid
U. Texas at Austin

khurshid@ece.utexas.edu

Corina S. Păsăreanu⇤

CMU/NASA Ames
corina.s.pasareanu@nasa.gov

Koushik Sen
U.C. Berkeley

ksen@eecs.berkeley.edu

Nikolai Tillmann
Microsoft Research
nikolait@microsoft.com

Willem Visser
Stellenbosch University

visserw@sun.ac.za

ABSTRACT

We present results for the “Impact Project Focus Area” on
the topic of symbolic execution as used in software testing.
Symbolic execution is a program analysis technique intro-
duced in the 70s that has received renewed interest in recent
years, due to algorithmic advances and increased availability
of computational power and constraint solving technology.
We review classical symbolic execution and some modern
extensions such as generalized symbolic execution and dy-
namic test generation. We also give a preliminary assess-
ment of the use in academia, research labs, and industry.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Symbolic execution

General Terms

Reliability

Keywords

Generalized symbolic execution, dynamic test generation

1. INTRODUCTION

The ACM-SIGSOFT Impact Project is documenting the
impact that software engineering research has had on soft-
ware development practice. In this paper, we present pre-
liminary results for documenting the impact of research in
symbolic execution for automated software testing. Sym-
bolic execution is a program analysis technique that was
introduced in the 70s [8, 15, 31, 35, 46], and that has found
renewed interest in recent years [9,12,13,28,29,32,33,40,42,
43,50–52,56,57].

⇤We thank Matt Dwyer for his advice

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

Symbolic execution is now the underlying technique of
several popular testing tools, many of them open-source:
NASA’s Symbolic (Java) PathFinder1, UIUC’s CUTE and
jCUTE2, Stanford’s KLEE3, UC Berkeley’s CREST4 and
BitBlaze5, etc. Symbolic execution tools are now used in in-
dustrial practice at Microsoft (Pex6, SAGE [29], YOGI7 and
PREfix [10]), IBM (Apollo [2]), NASA and Fujitsu (Sym-
bolic PathFinder), and also form a key part of the com-
mercial testing tool suites from Parasoft and other compa-
nies [60].

Although we acknowledge that the impact of symbolic ex-
ecution in software practice is still limited, we believe that
the explosion of work in this area over the past years makes
for an interesting story about the increasing impact of sym-
bolic execution since it was first introduced in the 1970s.
Note that this paper is not meant to provide a comprehen-
sive survey of symbolic execution techniques; such surveys
can be found elsewhere [19, 44, 49]. Instead, we focus here
on a few modern symbolic execution techniques that have
shown promise to impact software testing in practice.

Software testing is the most commonly used technique for
validating the quality of software, but it is typically a mostly
manual process that accounts for a large fraction of software
development and maintenance. Symbolic execution is one of
the many techniques that can be used to automate software
testing by automatically generating test cases that achieve
high coverage of program executions.

Symbolic execution is a program analysis technique that
executes programs with symbolic rather than concrete in-
puts and maintains a path condition that is updated when-
ever a branch instruction is executed, to encode the con-
straints on the inputs that reach that program point. Test
generation is performed by solving the collected constraints
using a constraint solver. Symbolic execution can also be
used for bug finding, where it checks for run-time errors or
assertion violations and it generates test inputs that trigger
those errors.

The original approaches to symbolic execution [8,15,31,35,

1http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/
jpf-symbc
2http://osl.cs.uiuc.edu/~ksen/cute/
3http://klee.llvm.org/
4http://code.google.com/p/crest/
5http://bitblaze.cs.berkeley.edu/
6http://research.microsoft.com/en-us/projects/pex/
7http://research.microsoft.com/en-us/projects/yogi/

c� 2011 Association for Computing Machinery. ACM acknowledges that

this contribution was authored or co-authored by a contractor or affiliate

of the U.S. Government. As such, the Government retains a nonexclusive,

royalty-free right to publish or reproduce this article, or to allow others to

do so, for Government purposes only.

ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

1066

정적 분석 원리

18

error zone

error zone

• 프로그램 실행을 요약(abstraction)하여 실행

정적 분석 원리

18

error zone

error zone

• 프로그램 실행을 요약(abstraction)하여 실행

정적 분석 원리

19

30 × 12 + 11 × 9 = ?

정적 분석 원리

20

void f (int x) {
 y = x * 12 + 9 * 11;
 assert (y % 2 == 1);

}

정적 분석 예 1: 홀짝 분석

21

• 정수 공간을 홀짝 공간으로 요약

+ top even odd bottom

top

even

odd

bottom

• 프로그램 실행을 홀짝 공간에서 해석

정적 분석 예 2: 부호 분석

22

• 정수 공간을 부호 공간으로 요약

• 프로그램 실행을 부호 공간에서 해석

?
<latexit sha1_base64="XHvFMHFTYukWEC1o1sc5bXp7Mh0=">AAACx3icjVHLSsNAFD2Nr/quunQTLIKrkoigy6Ib3VWwD2iLJOm0HZpkQjIpluLCH3Crfyb+gf6Fd8YpqEV0QpIz595zZu69fhLyTDrOa8FaWFxaXimurq1vbG5tl3Z2G5nI04DVAxGKtOV7GQt5zOqSy5C1kpR5kR+ypj+6UPHmmKUZF/GNnCSsG3mDmPd54ElFdXwhb0tlp+LoZc8D14AyzKqJ0gs66EEgQI4IDDEk4RAeMnracOEgIa6LKXEpIa7jDPdYI21OWYwyPGJH9B3Qrm3YmPbKM9PqgE4J6U1JaeOQNILyUsLqNFvHc+2s2N+8p9pT3W1Cf994RcRKDIn9SzfL/K9O1SLRx5mugVNNiWZUdYFxyXVX1M3tL1VJckiIU7hH8ZRwoJWzPttak+naVW89HX/TmYpV+8Dk5nhXt6QBuz/HOQ8axxXXqbjXJ+XquRl1Efs4wBHN8xRVXKKGOnkP8YgnPFtXlrDG1t1nqlUwmj18W9bDB6A2kMQ=</latexit><latexit sha1_base64="XHvFMHFTYukWEC1o1sc5bXp7Mh0=">AAACx3icjVHLSsNAFD2Nr/quunQTLIKrkoigy6Ib3VWwD2iLJOm0HZpkQjIpluLCH3Crfyb+gf6Fd8YpqEV0QpIz595zZu69fhLyTDrOa8FaWFxaXimurq1vbG5tl3Z2G5nI04DVAxGKtOV7GQt5zOqSy5C1kpR5kR+ypj+6UPHmmKUZF/GNnCSsG3mDmPd54ElFdXwhb0tlp+LoZc8D14AyzKqJ0gs66EEgQI4IDDEk4RAeMnracOEgIa6LKXEpIa7jDPdYI21OWYwyPGJH9B3Qrm3YmPbKM9PqgE4J6U1JaeOQNILyUsLqNFvHc+2s2N+8p9pT3W1Cf994RcRKDIn9SzfL/K9O1SLRx5mugVNNiWZUdYFxyXVX1M3tL1VJckiIU7hH8ZRwoJWzPttak+naVW89HX/TmYpV+8Dk5nhXt6QBuz/HOQ8axxXXqbjXJ+XquRl1Efs4wBHN8xRVXKKGOnkP8YgnPFtXlrDG1t1nqlUwmj18W9bDB6A2kMQ=</latexit><latexit sha1_base64="XHvFMHFTYukWEC1o1sc5bXp7Mh0=">AAACx3icjVHLSsNAFD2Nr/quunQTLIKrkoigy6Ib3VWwD2iLJOm0HZpkQjIpluLCH3Crfyb+gf6Fd8YpqEV0QpIz595zZu69fhLyTDrOa8FaWFxaXimurq1vbG5tl3Z2G5nI04DVAxGKtOV7GQt5zOqSy5C1kpR5kR+ypj+6UPHmmKUZF/GNnCSsG3mDmPd54ElFdXwhb0tlp+LoZc8D14AyzKqJ0gs66EEgQI4IDDEk4RAeMnracOEgIa6LKXEpIa7jDPdYI21OWYwyPGJH9B3Qrm3YmPbKM9PqgE4J6U1JaeOQNILyUsLqNFvHc+2s2N+8p9pT3W1Cf994RcRKDIn9SzfL/K9O1SLRx5mugVNNiWZUdYFxyXVX1M3tL1VJckiIU7hH8ZRwoJWzPttak+naVW89HX/TmYpV+8Dk5nhXt6QBuz/HOQ8axxXXqbjXJ+XquRl1Efs4wBHN8xRVXKKGOnkP8YgnPFtXlrDG1t1nqlUwmj18W9bDB6A2kMQ=</latexit><latexit sha1_base64="XHvFMHFTYukWEC1o1sc5bXp7Mh0=">AAACx3icjVHLSsNAFD2Nr/quunQTLIKrkoigy6Ib3VWwD2iLJOm0HZpkQjIpluLCH3Crfyb+gf6Fd8YpqEV0QpIz595zZu69fhLyTDrOa8FaWFxaXimurq1vbG5tl3Z2G5nI04DVAxGKtOV7GQt5zOqSy5C1kpR5kR+ypj+6UPHmmKUZF/GNnCSsG3mDmPd54ElFdXwhb0tlp+LoZc8D14AyzKqJ0gs66EEgQI4IDDEk4RAeMnracOEgIa6LKXEpIa7jDPdYI21OWYwyPGJH9B3Qrm3YmPbKM9PqgE4J6U1JaeOQNILyUsLqNFvHc+2s2N+8p9pT3W1Cf994RcRKDIn9SzfL/K9O1SLRx5mugVNNiWZUdYFxyXVX1M3tL1VJckiIU7hH8ZRwoJWzPttak+naVW89HX/TmYpV+8Dk5nhXt6QBuz/HOQ8axxXXqbjXJ+XquRl1Efs4wBHN8xRVXKKGOnkP8YgnPFtXlrDG1t1nqlUwmj18W9bDB6A2kMQ=</latexit>

>
<latexit sha1_base64="J/sW+9Nycu8kGW+YskIbwJTOoOc=">AAACx3icjVHLSsNAFD2Nr/quunQTLIKrkoigy6Ib3VWwD2iLJOm0HZpkQjIpluLCH3Crfyb+gf6Fd8YpqEV0QpIz595zZu69fhLyTDrOa8FaWFxaXimurq1vbG5tl3Z2G5nI04DVAxGKtOV7GQt5zOqSy5C1kpR5kR+ypj+6UPHmmKUZF/GNnCSsG3mDmPd54ElFdaRIbktlp+LoZc8D14AyzKqJ0gs66EEgQI4IDDEk4RAeMnracOEgIa6LKXEpIa7jDPdYI21OWYwyPGJH9B3Qrm3YmPbKM9PqgE4J6U1JaeOQNILyUsLqNFvHc+2s2N+8p9pT3W1Cf994RcRKDIn9SzfL/K9O1SLRx5mugVNNiWZUdYFxyXVX1M3tL1VJckiIU7hH8ZRwoJWzPttak+naVW89HX/TmYpV+8Dk5nhXt6QBuz/HOQ8axxXXqbjXJ+XquRl1Efs4wBHN8xRVXKKGOnkP8YgnPFtXlrDG1t1nqlUwmj18W9bDB8GakNI=</latexit><latexit sha1_base64="J/sW+9Nycu8kGW+YskIbwJTOoOc=">AAACx3icjVHLSsNAFD2Nr/quunQTLIKrkoigy6Ib3VWwD2iLJOm0HZpkQjIpluLCH3Crfyb+gf6Fd8YpqEV0QpIz595zZu69fhLyTDrOa8FaWFxaXimurq1vbG5tl3Z2G5nI04DVAxGKtOV7GQt5zOqSy5C1kpR5kR+ypj+6UPHmmKUZF/GNnCSsG3mDmPd54ElFdaRIbktlp+LoZc8D14AyzKqJ0gs66EEgQI4IDDEk4RAeMnracOEgIa6LKXEpIa7jDPdYI21OWYwyPGJH9B3Qrm3YmPbKM9PqgE4J6U1JaeOQNILyUsLqNFvHc+2s2N+8p9pT3W1Cf994RcRKDIn9SzfL/K9O1SLRx5mugVNNiWZUdYFxyXVX1M3tL1VJckiIU7hH8ZRwoJWzPttak+naVW89HX/TmYpV+8Dk5nhXt6QBuz/HOQ8axxXXqbjXJ+XquRl1Efs4wBHN8xRVXKKGOnkP8YgnPFtXlrDG1t1nqlUwmj18W9bDB8GakNI=</latexit><latexit sha1_base64="J/sW+9Nycu8kGW+YskIbwJTOoOc=">AAACx3icjVHLSsNAFD2Nr/quunQTLIKrkoigy6Ib3VWwD2iLJOm0HZpkQjIpluLCH3Crfyb+gf6Fd8YpqEV0QpIz595zZu69fhLyTDrOa8FaWFxaXimurq1vbG5tl3Z2G5nI04DVAxGKtOV7GQt5zOqSy5C1kpR5kR+ypj+6UPHmmKUZF/GNnCSsG3mDmPd54ElFdaRIbktlp+LoZc8D14AyzKqJ0gs66EEgQI4IDDEk4RAeMnracOEgIa6LKXEpIa7jDPdYI21OWYwyPGJH9B3Qrm3YmPbKM9PqgE4J6U1JaeOQNILyUsLqNFvHc+2s2N+8p9pT3W1Cf994RcRKDIn9SzfL/K9O1SLRx5mugVNNiWZUdYFxyXVX1M3tL1VJckiIU7hH8ZRwoJWzPttak+naVW89HX/TmYpV+8Dk5nhXt6QBuz/HOQ8axxXXqbjXJ+XquRl1Efs4wBHN8xRVXKKGOnkP8YgnPFtXlrDG1t1nqlUwmj18W9bDB8GakNI=</latexit><latexit sha1_base64="J/sW+9Nycu8kGW+YskIbwJTOoOc=">AAACx3icjVHLSsNAFD2Nr/quunQTLIKrkoigy6Ib3VWwD2iLJOm0HZpkQjIpluLCH3Crfyb+gf6Fd8YpqEV0QpIz595zZu69fhLyTDrOa8FaWFxaXimurq1vbG5tl3Z2G5nI04DVAxGKtOV7GQt5zOqSy5C1kpR5kR+ypj+6UPHmmKUZF/GNnCSsG3mDmPd54ElFdaRIbktlp+LoZc8D14AyzKqJ0gs66EEgQI4IDDEk4RAeMnracOEgIa6LKXEpIa7jDPdYI21OWYwyPGJH9B3Qrm3YmPbKM9PqgE4J6U1JaeOQNILyUsLqNFvHc+2s2N+8p9pT3W1Cf994RcRKDIn9SzfL/K9O1SLRx5mugVNNiWZUdYFxyXVX1M3tL1VJckiIU7hH8ZRwoJWzPttak+naVW89HX/TmYpV+8Dk5nhXt6QBuz/HOQ8axxXXqbjXJ+XquRl1Efs4wBHN8xRVXKKGOnkP8YgnPFtXlrDG1t1nqlUwmj18W9bDB8GakNI=</latexit>

neg zero pos

+ top neg zero pos bot
top
neg
zero
pos
bot

산업체 적용 사례

23
62 COMMUNICATIONS OF THE ACM | AUGUST 2019 | VOL. 62 | NO. 8

contributed articles

STATIC ANALYSIS TOOLS are programs that examine, and
attempt to draw conclusions about, the source of other
programs without running them. At Facebook, we
have been investing in advanced static analysis tools
that employ reasoning techniques similar to those
from program verification. The tools we describe in
this article (Infer and Zoncolan) target issues related
to crashes and to the security of our services, they
perform sometimes complex reasoning spanning
many procedures or files, and they are integrated into
engineering workflows in a way that attempts to bring
value while minimizing friction.

These tools run on code modifications, participating
as bots during the code review process. Infer targets
our mobile apps as well as our backend C++ code,
codebases with 10s of millions of lines; it has seen
over 100 thousand reported issues fixed by developers
before code reaches production. Zoncolan targets the
100-million lines of Hack code, and is additionally

integrated in the workflow used by se-
curity engineers. It has led to thousands
of fixes of security and privacy bugs, out-
performing any other detection method
used at Facebook for such vulnerabili-
ties. We will describe the human and
technical challenges encountered and
lessons we have learned in developing
and deploying these analyses.

There has been a tremendous
amount of work on static analysis,
both in industry and academia, and we
will not attempt to survey that material
here. Rather, we present our rationale
for, and results from, using techniques
similar to ones that might be encoun-
tered at the edge of the research litera-
ture, not only simple techniques that
are much easier to make scale. Our
goal is to complement other reports
on industrial static analysis and formal
methods,1,6,13,17 and we hope that such
perspectives can provide input both to
future research and to further indus-
trial use of static analysis.

Next, we discuss the three dimen-
sions that drive our work: bugs that
matter, people, and actioned/missed
bugs. The remainder of the article de-
scribes our experience developing and
deploying the analyses, their impact,
and the techniques that underpin our
tools.

Context for Static
Analysis at Facebook
Bugs that Matter. We use static analysis to
prevent bugs that would affect our prod-
ucts, and we rely on our engineers’ judg-
ment as well as data from production to
tell us the bugs that matter the most.

Scaling Static
Analyses
at Facebook

DOI:10.1145/3338112

Key lessons for designing static analyses tools
deployed to find bugs in hundreds of millions
of lines of code.

BY DINO DISTEFANO, MANUEL FÄHNDRICH,
FRANCESCO LOGOZZO, AND PETER W. O’HEARN

 key insights
 ! Advanced static analysis techniques

performing deep reasoning about
source code can scale to large
industrial codebases, for example, with
100-million LOC.

 ! Static analyses should strike a balance
between missed bugs (false negatives)
and un-actioned reports (false positives).

 ! A “diff time” deployment, where issues
are given to developers promptly as part
of code review, is important to catching
bugs early and getting high fix rates.

58 COMMUNICATIONS OF THE ACM | APRIL 2018 | VOL. 61 | NO. 4

Lessons
from Building
Static Analysis
Tools at Google

DOI:10.1145/3188720

For a static analysis project to succeed,
developers must feel they benefit from
and enjoy using it.

BY CAITLIN SADOWSKI, EDWARD AFTANDILIAN, ALEX EAGLE,
LIAM MILLER-CUSHON, AND CIERA JASPAN

Not integrated. The tool is not inte-
grated into the developer’s workflow or
takes too long to run;

Not actionable. The warnings are not
actionable;

Not trustworthy. Users do not trust
the results due to, say, false positives;

Not manifest in practice. The report-
ed bug is theoretically possible, but the
problem does not actually manifest in
practice;

SOFTWARE BUGS COST developers and software
companies a great deal of time and money. For example,
in 2014, a bug in a widely used SSL implementation
(“goto fail”) caused it to accept invalid SSL certificates,36
and a bug related to date formatting caused a large-scale
Twitter outage.23 Such bugs are often statically detectable
and are, in fact, obvious upon reading the code or
documentation yet still make it into production software.

Previous work has reported on experience applying
bug-detection tools to production software.6,3,7,29

Although there are many such success stories for
developers using static analysis tools, there are also
reasons engineers do not always use static analysis
tools or ignore their warnings,6,7,26,30 including:

 key insights
 ! Static analysis authors should focus on

the developer and listen to their feedback.

 ! Careful developer workflow integration
is key for static analysis tool adoption.

 ! Static analysis tools can scale by
crowdsourcing analysis development.

contributed articles

산업체 적용 사례

24

WWDC (Apple Worldwide Developers Conferece) 2021

https://developer.apple.com/videos/play/wwdc2021/10202/

형식 검증

25

• 프로그램 실행 의미와 오류 조건을 논리식으로 변환

error zone

error zone

Fpgm ^ ¬Ferror

형식 검증

26

• 프로그램과 증명할 성질을 논리식으로 표현

• 논리식의 satisfiability 여부를 판별

Verifier

프로그램

증명할 성질

증명성공!

반례
(counterexample)

P

� P ^ ¬�SMT()

UNSAT

SAT

예제

27

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧
((a ∧ y) ∨ (¬a ∧ ¬y)) ∧
¬(x == y)

int f(bool a) {
 x = 0; y = 0;
 if (a) {
 x = 1;
 }
 if (a) {
 y = 1;
 }
 assert (x == y)
}

Verification Condition:
①

예제

27

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧
((a ∧ y) ∨ (¬a ∧ ¬y)) ∧
¬(x == y)

② SMT solver: unsatisfiable!

int f(bool a) {
 x = 0; y = 0;
 if (a) {
 x = 1;
 }
 if (a) {
 y = 1;
 }
 assert (x == y)
}

Verification Condition:
①

예제

28

int f(a, b) {
 x = 0; y = 0;
 if (a) {
 x = 1;
 }
 if (b) {
 y = 1;
 }
 assert (x == y)
}

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧
((b ∧ y) ∨ (¬b ∧ ¬y)) ∧
¬(x == y)

①
Verification Condition:

예제

28

int f(a, b) {
 x = 0; y = 0;
 if (a) {
 x = 1;
 }
 if (b) {
 y = 1;
 }
 assert (x == y)
}

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧
((b ∧ y) ∨ (¬b ∧ ¬y)) ∧
¬(x == y)

② SMT solver:
 satisfiable when a=1 and b=0

①
Verification Condition:

반복문 불변 성질 (Invariant)

29

i = 0;
j = 0;
while  
(i < 10) {
 i++;
 j++;
}
assert (i-j==0)

반복문 불변 성질 (Invariant)

29

i = 0;
j = 0;
while  
(i < 10) {
 i++;
 j++;
}
assert (i-j==0)

@(i==j)

반복문 불변 성질 (Invariant)

29

i = 0;
j = 0;
while  
(i < 10) {
 i++;
 j++;
}
assert (i-j==0)

@(i==j)

무한히 많은 불변 성질들 (i >= 0,j >= 0,i ==
j,true,…) 가운데 증명에 성공하는 것이 필요

형식 검증 기술의 장단점

30

Example: Bubble Sort

@pre : >
@post : sorted(rv, 0, |rv| � 1)
bool BubbleSort (int a[]) {

int[] a := a0

@L1

2

4
�1 i < |a|
^ partitioned(a, 0, i, i + 1, |a| � 1)
^ sorted(a, i, |a| � 1)

3

5

for (int i := |a| � 1; i > 0; i := i � 1) {

@L2

2

664

1 i < |a| ^ 0 j i
^ partitioned(a, 0, i, i + 1, |a| � 1)
^ partitioned(a, 0, j � 1, j, j)
^ sorted(a, i, |a| � 1)

3

775

for (int j := 0; j < i; j := j + 1) {
if (a[j] > a[j + 1]) {

int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}

partitioned(a, l1, u1, l2, u2) () 8i, j. l1 i u1 < l2 j u2 ! a[i] a[j].
Hakjoo Oh AAA528 2021 Spring, Lecture 6 June 14, 2021 15 / 55

Example: Binary Search

It behaves correctly only when l � 0, u < |a|, and a is sorted.

It returns true i↵ the array a contains the value e in the range [l, u].

@pre : 0 l ^ u < |a| ^ sorted(a, l, u)
@post : rv $ 9i.l i u ^ a[i] = e
bool BinarySearch (int a[], int l, int u, int e) {
if (l > u) return false;
else {
int m := (l + u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) return BinarySearch (a,m + 1, u, e)
else return BinarySearch (a, l,m � 1, e)

}
}

sorted(a, l, u) () 8i, j.l i j u ! a[i] a[j]

Hakjoo Oh AAA528 2021 Spring, Lecture 6 June 14, 2021 10 / 55

Running Example 3: Bubble Sort

bool BubbleSort (int a[]) {
int[] a := a0

for (int i := |a| � 1; i > 0; i := i � 1) {
for (int j := 0; j < i; j := j + 1) {
if (a[j] > a[j + 1]) {
int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}

Hakjoo Oh AAA528 2021 Spring, Lecture 6 June 14, 2021 5 / 55

산업체 적용 사례: Dafny

31

산업체 적용 사례

32

Code-Level Model Checking in the
Software Development Workflow

Nathan Chong
Amazon

Byron Cook
Amazon

UCL

Konstantinos Kallas
University of Pennsylvania

Kareem Khazem
Amazon

Felipe R. Monteiro
Amazon

Daniel Schwartz-Narbonne
Amazon

Serdar Tasiran
Amazon

Michael Tautschnig
Amazon

Queen Mary University of London

Mark R. Tuttle
Amazon

ABSTRACT
This experience report describes a style of applying symbolic model
checking developed over the course of four years at Amazon Web
Services (AWS). Lessons learned are drawn from proving properties
of numerous C-based systems, e.g., custom hypervisors, encryp-
tion code, boot loaders, and an IoT operating system. Using our
methodology, we find that we can prove the correctness of industrial
low-level C-based systems with reasonable effort and predictability.
Furthermore, AWS developers are increasingly writing their own
formal specifications. All proofs discussed in this paper are publicly
available on GitHub.

CCS CONCEPTS
• Software and its engineering→ Formal software verification;
Model checking; Correctness; •Theory of computation→ Program
reasoning.

KEYWORDS
Continuous Integration, Model Checking, Memory Safety.

ACM Reference Format:
Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Felipe R.
Monteiro, Daniel Schwartz-Narbonne, Serdar Tasiran, Michael Tautschnig,
and Mark R. Tuttle. 2020. Code-Level Model Checking in the Software
Development Workflow. In Software Engineering in Practice (ICSE-SEIP

’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3377813.3381347

1 INTRODUCTION
This is a report on making code-level proof via model checking
a routine part of the software development workflow in a large
industrial organization. Formal verification of source code can have
a significant positive impact on the quality of industrial code. In

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7123-0/20/05.
https://doi.org/10.1145/3377813.3381347

particular, formal specification of code provides precise, machine-
checked documentation for developers and consumers of a code
base. They improve code quality by ensuring that the program’s
implementation reflects the developer’s intent. Unlike testing, which
can only validate code against a set of concrete inputs, formal proof
can assure that the code is both secure and correct for all possible
inputs.

Unfortunately, rapid proof development is difficult in cases where
proofs are written by a separate specialized team and not the software
developers themselves. The developer writing a piece of code has
an internal mental model of their code that explains why, and under
what conditions, it is correct. However, this model typically remains
known only to the developer. At best, it may be partially captured
through informal code comments and design documents. As a result,
the proof team must spend significant effort to reconstruct the formal
specification of the code they are verifying. This slows the process
of developing proofs.

Over the course of four years developing code-level proofs in
Amazon Web Services (AWS), we have developed a proof methodol-
ogy that allows us to produce proofs with reasonable and predictable
effort. For example, using these techniques, one full-time verification
engineer and two interns were able to specify and verify 171 entry
points over 9 key modules in the AWS C Common1 library over a
period of 24 weeks (see Sec. 3.2 for a more detailed description of
this library). All specifications, proofs, and related artifacts (such as
continuous integration reports), described in this paper have been
integrated into the main AWS C Common repository on GitHub, and
are publicly available at https://github.com/awslabs/aws-c-common/.

1.1 Methodology
Our methodology has four key elements, all of which focus on com-
municating with the development team using artifacts that fit their
existing development practices. We find that of the many different
ways we have approached verification engagements, this combina-
tion of techniques has most deeply involved software developers in
the proof creation and maintenance process. In particular, developers
have begun to write formal functional specifications for code as they
develop it. Initially, this involved the development team asking the
verification team to assist them in writing specifications for new

1https://github.com/awslabs/aws-c-common

��

�����*&&&�"$.���OE�*OUFSOBUJPOBM�$POGFSFODF�PO�4PGUXBSF�&OHJOFFSJOH��4PGUXBSF�&OHJOFFSJOH�JO�1SBDUJDF�	*$4&�4&*1

프로그램 분석 기술 요약

33

Automatic Sound Complete When

Testing/
Fuzzing

Symbolic
Execution

Static
Analysis

Formal
Verification

?

• Members: 10 PhD and 5 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE, and Security: (last 5 years)

• PL: POPL(’22),PLDI(’20),OOPSLA(‘17a,’17b,’18a,’18b,’19,’20)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b), FSE(’18,’19,’20,’21,’22), ASE(’18), ISSTA(’20)

• Security: IEEE S&P(’17,’20), USENIX Security(’21)

http://prl.korea.ac.kr

소프트웨어 분석 연구실@Korea Univ.

http://prl.korea.ac.kr

