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소프트웨어 오류 문제
• 소프트웨어 오류는 사회 모든 영역에서 발생하는 추세
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• 소프트웨어 결함으로 인한 사회경제적 비용은 연 1.7조 달러로 추정
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유력 답안: 오류 자동 검출 & 수정 기술
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• 소프트웨어의 실행 성질을 엄밀히 확인하는 기술

• 정적 분석: 실행 전 확인 (요약 해석, 모델 체킹 등)

• 동적 분석: 실행 중 확인 (퍼징, 기호 실행 등)

• 소프트웨어 산업에서 적극적으로 활용되기 시작

Static Program Analysis

Technology for “Software MRI”

I Detect software bugs statically and automatically
I static: by analyzing program text, before run/ship/embed
I automatic: sw is analyzed by sw (“static analyzer”)

I Next-generation software testing technology
I finding bugs early / full automation / all bugs found

I Being widely used in sw industry

code
Safety proved

Bugs found

프로그램 분석
Static Program Analysis

Technology for “Software MRI”

I Detect software bugs statically and automatically
I static: by analyzing program text, before run/ship/embed
I automatic: sw is analyzed by sw (“static analyzer”)

I Next-generation software testing technology
I finding bugs early / full automation / all bugs found

I Being widely used in sw industry



프로그램 분석 기술 분류
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완벽한 프로그램 분석은 불가능
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Alan Turing

• Halting problem: 주어진 프로그램이 항상 종료하는가?

impossible!

• 완벽한 프로그램 분석기 M이 존재한다면 Halting problem이 풀린다.



프로그램 분석 공통 원리
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error zone

error zone
…

실제 실행

• 근사/요약 (approximation/abstraction)

• 동적 분석: under-approximation

• 정적 분석: over-approximation



프로그램 분석 공통 원리
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프로그램 분석 기법
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안전

자동 완전



프로그램 분석 기법
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안전

자동 완전
테스팅 / 퍼징 / 기호실행

(testing / fuzzing / symbolic execution)



프로그램 분석 기법
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안전

자동 완전

정적 분석
(static analysis)



프로그램 분석 기법
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안전

자동 완전

프로그램 검증
(program verification)



테스팅 / 퍼징 원리
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error zone

error zone

• 프로그램의 개별 실행 경로들을 일일이 추적

i0

i1
i2
i3



테스팅 / 퍼징 원리
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int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    }              
  }               
}

2. Probability of the error?
 (assume 0 ≤ x,y ≤ 10,000)

1. Error-triggering test?



cf) 퍼징 방식
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• Blackbox fuzzing

• Whitebox fuzzing

• Greybox fuzzing 

Greybox 
FuzzingSeed input Mutated inputs

List of “interesting”  
seeds

Add inputs that 
increase coverage



산업체 적용 사례
• AFL (https://github.com/google/AFL)

• OSS-Fuzz (https://github.com/google/oss-fuzz)
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Google OSS-Fuzz

Microsoft

https://github.com/google/AFL
https://github.com/google/oss-fuzz


기호 실행 원리

• 동일한 실행 경로를 가지는 입력들을 한번에 실행
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error zone

error zone

i0, i4

i1, i5
i2, i6

i3, i7, i8



기호 실행 원리

14

int double (int v) { 
  return 2*v; 
} 

void testme(int x, int y) { 

  z := double (y);   
   
  if (z==x) {        

          
    if (x>y+10) {     
      Error;        
    } else {   …}           
  }               
}
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2β = α ∧ α > β + 104



기호 실행 원리
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기호 실행 적용 사례
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See “Concolic Testing with Adaptively Changing Search Heuristics. FSE 2019” 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vagrant@ubuntu-bionic:~/swtest$ grep --version
grep (GNU grep) 3.1
Copyright (C) 2017 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Written by Mike Haertel and others, see <http://git.sv.gnu.org/cgit/grep.git/tree/AUTHORS>.

vagrant@ubuntu-bionic:~/swtest$ time grep '\(\)\1*?*?\|\W*\1W*'
grep: regexec.c:1344: pop_fail_stack: Assertion `num >= 0' failed.
Aborted (core dumped)

real 0m0.074s
user 0m0.001s
sys 0m0.000s

vagrant@ubuntu-bionic:~/swtest$ time grep '\(\)\1^*@*\?\1*\+*\?'
Segmentation fault (core dumped)

real 0m10.975s
user 0m10.672s
sys 0m0.239s



산업체 적용 사례
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practice

M OST  C O M M U N I C AT I O N S  READ ER S  might think of 
“program verification research” as mostly theoretical 
with little impact on the world at large. Think again.  
If you are reading these lines on a PC running some 
form of Windows (like over 93% of PC users—that is, 
more than one billion people), then you have been 
affected by this line of work—without knowing it, 
which is precisely the way we want it to be.

Every second Tuesday of every month, also known 
as “Patch Tuesday,” Microsoft releases a list of 
security bulletins and associated security patches to 
be deployed on hundreds of millions of machines 
worldwide. Each security bulletin costs Microsoft 

and its users millions of dollars. If a 
monthly security update costs you 
$0.001 (one tenth of one cent) in just 
electricity or loss of productivity, then 
this number multiplied by one bil-
lion people is $1 million. Of course, if 
malware were spreading on your ma-
chine, possibly leaking some of your 
private data, then that might cost you 
much more than $0.001. This is why 
we strongly encourage you to apply 
those pesky security updates. 

Many security vulnerabilities are a 
result of programming errors in code 
for parsing files and packets that are 
transmitted over the Internet. For ex-
ample, Microsoft Windows includes 
parsers for hundreds of file formats. 

If you are reading this article on a 
computer, then the picture shown in 
Figure 1 is displayed on your screen 
after a jpg parser (typically part of 
your operating system) has read the 
image data, decoded it, created new 
data structures with the decoded data, 
and passed those to the graphics card 
in your computer. If the code imple-
menting that jpg parser contains a 
bug such as a buffer overflow that can 
be triggered by a corrupted jpg image, 
then the execution of this jpg parser 
on your computer could potentially be 
hijacked to execute some other code, 
possibly malicious and hidden in the 
jpg data itself. 

This is just one example of a pos-
sible security vulnerability and at-
tack scenario. The security bugs dis-
cussed throughout the rest of this 
article are mostly buffer overflows. 

Hunting for “Million-Dollar” Bugs 
Today, hackers find security vulnera-
bilities in software products using two 
primary methods. The first is code in-
spection of binaries (with a good dis-
assembler, binary code is like source 
code). 

The second is blackbox fuzzing, 
a form of blackbox random testing, 
which randomly mutates well-formed 
program inputs and then tests the 
program with those modified inputs,3 
hoping to trigger a bug such as a buf-

SAGE: 
Whitebox 
Fuzzing for 
Security 
Testing

DOI:10.1145/2093548.2093564
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ABSTRACT

We present results for the “Impact Project Focus Area” on
the topic of symbolic execution as used in software testing.
Symbolic execution is a program analysis technique intro-
duced in the 70s that has received renewed interest in recent
years, due to algorithmic advances and increased availability
of computational power and constraint solving technology.
We review classical symbolic execution and some modern
extensions such as generalized symbolic execution and dy-
namic test generation. We also give a preliminary assess-
ment of the use in academia, research labs, and industry.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Symbolic execution

General Terms

Reliability

Keywords

Generalized symbolic execution, dynamic test generation

1. INTRODUCTION

The ACM-SIGSOFT Impact Project is documenting the
impact that software engineering research has had on soft-
ware development practice. In this paper, we present pre-
liminary results for documenting the impact of research in
symbolic execution for automated software testing. Sym-
bolic execution is a program analysis technique that was
introduced in the 70s [8, 15, 31, 35, 46], and that has found
renewed interest in recent years [9,12,13,28,29,32,33,40,42,
43,50–52,56,57].

⇤We thank Matt Dwyer for his advice

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

Symbolic execution is now the underlying technique of
several popular testing tools, many of them open-source:
NASA’s Symbolic (Java) PathFinder1, UIUC’s CUTE and
jCUTE2, Stanford’s KLEE3, UC Berkeley’s CREST4 and
BitBlaze5, etc. Symbolic execution tools are now used in in-
dustrial practice at Microsoft (Pex6, SAGE [29], YOGI7 and
PREfix [10]), IBM (Apollo [2]), NASA and Fujitsu (Sym-
bolic PathFinder), and also form a key part of the com-
mercial testing tool suites from Parasoft and other compa-
nies [60].

Although we acknowledge that the impact of symbolic ex-
ecution in software practice is still limited, we believe that
the explosion of work in this area over the past years makes
for an interesting story about the increasing impact of sym-
bolic execution since it was first introduced in the 1970s.
Note that this paper is not meant to provide a comprehen-
sive survey of symbolic execution techniques; such surveys
can be found elsewhere [19, 44, 49]. Instead, we focus here
on a few modern symbolic execution techniques that have
shown promise to impact software testing in practice.

Software testing is the most commonly used technique for
validating the quality of software, but it is typically a mostly
manual process that accounts for a large fraction of software
development and maintenance. Symbolic execution is one of
the many techniques that can be used to automate software
testing by automatically generating test cases that achieve
high coverage of program executions.

Symbolic execution is a program analysis technique that
executes programs with symbolic rather than concrete in-
puts and maintains a path condition that is updated when-
ever a branch instruction is executed, to encode the con-
straints on the inputs that reach that program point. Test
generation is performed by solving the collected constraints
using a constraint solver. Symbolic execution can also be
used for bug finding, where it checks for run-time errors or
assertion violations and it generates test inputs that trigger
those errors.

The original approaches to symbolic execution [8,15,31,35,

1http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/
jpf-symbc
2http://osl.cs.uiuc.edu/~ksen/cute/
3http://klee.llvm.org/
4http://code.google.com/p/crest/
5http://bitblaze.cs.berkeley.edu/
6http://research.microsoft.com/en-us/projects/pex/
7http://research.microsoft.com/en-us/projects/yogi/

c� 2011 Association for Computing Machinery. ACM acknowledges that

this contribution was authored or co-authored by a contractor or affiliate

of the U.S. Government. As such, the Government retains a nonexclusive,

royalty-free right to publish or reproduce this article, or to allow others to

do so, for Government purposes only.

ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00
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정적 분석 원리
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정적 분석 원리

19

30 × 12 + 11 × 9 = ?



정적 분석 원리
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void f (int x) { 
 y = x * 12 + 9 * 11; 
 assert (y % 2 == 1); 

}



정적 분석 예 1: 홀짝 분석
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• 정수 공간을 홀짝 공간으로 요약

+ top even odd bottom

top

even

odd

bottom

• 프로그램 실행을 홀짝 공간에서 해석



정적 분석 예 2: 부호 분석
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• 정수 공간을 부호 공간으로 요약

• 프로그램 실행을 부호 공간에서 해석

?
<latexit sha1_base64="XHvFMHFTYukWEC1o1sc5bXp7Mh0="></latexit><latexit sha1_base64="XHvFMHFTYukWEC1o1sc5bXp7Mh0="></latexit><latexit sha1_base64="XHvFMHFTYukWEC1o1sc5bXp7Mh0="></latexit><latexit sha1_base64="XHvFMHFTYukWEC1o1sc5bXp7Mh0="></latexit>

>
<latexit sha1_base64="J/sW+9Nycu8kGW+YskIbwJTOoOc="></latexit><latexit sha1_base64="J/sW+9Nycu8kGW+YskIbwJTOoOc="></latexit><latexit sha1_base64="J/sW+9Nycu8kGW+YskIbwJTOoOc="></latexit><latexit sha1_base64="J/sW+9Nycu8kGW+YskIbwJTOoOc="></latexit>

neg zero pos

+ top neg zero pos bot
top
neg
zero
pos
bot
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contributed articles

STATIC ANALYSIS TOOLS are programs that examine, and 
attempt to draw conclusions about, the source of other 
programs without running them. At Facebook, we 
have been investing in advanced static analysis tools 
that employ reasoning techniques similar to those 
from program verification. The tools we describe in 
this article (Infer and Zoncolan) target issues related 
to crashes and to the security of our services, they 
perform sometimes complex reasoning spanning 
many procedures or files, and they are integrated into 
engineering workflows in a way that attempts to bring 
value while minimizing friction. 

These tools run on code modifications, participating 
as bots during the code review process. Infer targets 
our mobile apps as well as our backend C++ code, 
codebases with 10s of millions of lines; it has seen 
over 100 thousand reported issues fixed by developers 
before code reaches production. Zoncolan targets the 
100-million lines of Hack code, and is additionally 

integrated in the workflow used by se-
curity engineers. It has led to thousands 
of fixes of security and privacy bugs, out-
performing any other detection method 
used at Facebook for such vulnerabili-
ties. We will describe the human and 
technical challenges encountered and 
lessons we have learned in developing 
and deploying these analyses.

There has been a tremendous 
amount of work on static analysis, 
both in industry and academia, and we 
will not attempt to survey that material 
here. Rather, we present our rationale 
for, and results from, using techniques 
similar to ones that might be encoun-
tered at the edge of the research litera-
ture, not only simple techniques that 
are much easier to make scale. Our 
goal is to complement other reports 
on industrial static analysis and formal 
methods,1,6,13,17 and we hope that such 
perspectives can provide input both to 
future research and to further indus-
trial use of static analysis.

Next, we discuss the three dimen-
sions that drive our work: bugs that 
matter, people, and actioned/missed 
bugs. The remainder of the article de-
scribes our experience developing and 
deploying the analyses, their impact, 
and the techniques that underpin our 
tools.

Context for Static 
Analysis at Facebook
Bugs that Matter. We use static analysis to 
prevent bugs that would affect our prod-
ucts, and we rely on our engineers’ judg-
ment as well as data from production to 
tell us the bugs that matter the most.

Scaling Static 
Analyses  
at Facebook

DOI:10.1145/3338112

Key lessons for designing static analyses tools 
deployed to find bugs in hundreds of millions 
of lines of code.

BY DINO DISTEFANO, MANUEL FÄHNDRICH,  
FRANCESCO LOGOZZO, AND PETER W. O’HEARN

 key insights
 ! Advanced static analysis techniques 

performing deep reasoning about 
source code can scale to large 
industrial codebases, for example, with 
100-million LOC.

 ! Static analyses should strike a balance 
between missed bugs (false negatives) 
and un-actioned reports (false positives).

 ! A “diff time” deployment, where issues 
are given to developers promptly as part 
of code review, is important to catching 
bugs early and getting high fix rates.
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Lessons  
from Building  
Static Analysis 
Tools at Google

DOI:10.1145/3188720 

For a static analysis project to succeed, 
developers must feel they benefit from  
and enjoy using it.

BY CAITLIN SADOWSKI, EDWARD AFTANDILIAN, ALEX EAGLE, 
LIAM MILLER-CUSHON, AND CIERA JASPAN 

Not integrated. The tool is not inte-
grated into the developer’s workflow or 
takes too long to run; 

Not actionable. The warnings are not 
actionable; 

Not trustworthy. Users do not trust 
the results due to, say, false positives; 

Not manifest in practice. The report-
ed bug is theoretically possible, but the 
problem does not actually manifest in 
practice; 

SOFTWARE BUGS COST  developers and software 
companies a great deal of time and money. For example, 
in 2014, a bug in a widely used SSL implementation 
(“goto fail”) caused it to accept invalid SSL certificates,36 
and a bug related to date formatting caused a large-scale 
Twitter outage.23 Such bugs are often statically detectable 
and are, in fact, obvious upon reading the code or 
documentation yet still make it into production software. 

Previous work has reported on experience applying 
bug-detection tools to production software.6,3,7,29 

Although there are many such success stories for 
developers using static analysis tools, there are also 
reasons engineers do not always use static analysis 
tools or ignore their warnings,6,7,26,30 including: 

 key insights
 ! Static analysis authors should focus on 

the developer and listen to their feedback. 

 ! Careful developer workflow integration  
is key for static analysis tool adoption. 

 ! Static analysis tools can scale by 
crowdsourcing analysis development. 

contributed articles
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WWDC (Apple Worldwide Developers Conferece) 2021

https://developer.apple.com/videos/play/wwdc2021/10202/
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• 프로그램 실행 의미와 오류 조건을 논리식으로 변환

error zone

error zone

Fpgm ^ ¬Ferror
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• 프로그램과 증명할 성질을 논리식으로 표현

• 논리식의 satisfiability 여부를 판별

Verifier

프로그램

증명할 성질

증명성공!

반례 
(counterexample)

P

� P ^ ¬�SMT(             )

UNSAT

SAT
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((a ∧ x) ∨ (¬a ∧ ¬x)) ∧ 
((a ∧ y) ∨ (¬a ∧ ¬y)) ∧ 
¬(x == y)

int f(bool a) {
  x = 0; y = 0;
  if (a) {
    x = 1;
  }
  if (a) {
    y = 1;
  }
  assert (x == y)
}

Verification Condition:
①



예제

27

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧ 
((a ∧ y) ∨ (¬a ∧ ¬y)) ∧ 
¬(x == y)

②       SMT solver: unsatisfiable!

int f(bool a) {
  x = 0; y = 0;
  if (a) {
    x = 1;
  }
  if (a) {
    y = 1;
  }
  assert (x == y)
}

Verification Condition:
①
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int f(a, b) {
  x = 0; y = 0;
  if (a) {
    x = 1;
  }
  if (b) {
    y = 1;
  }
  assert (x == y)
}

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧ 
((b ∧ y) ∨ (¬b ∧ ¬y)) ∧ 
¬(x == y)

①
Verification Condition:
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int f(a, b) {
  x = 0; y = 0;
  if (a) {
    x = 1;
  }
  if (b) {
    y = 1;
  }
  assert (x == y)
}

((a ∧ x) ∨ (¬a ∧ ¬x)) ∧ 
((b ∧ y) ∨ (¬b ∧ ¬y)) ∧ 
¬(x == y)

②       SMT solver:
          satisfiable when a=1 and b=0

①
Verification Condition:
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i = 0; 
j = 0;
while  
(i < 10) {
  i++;
  j++;
}
assert (i-j==0)
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i = 0; 
j = 0;
while  
(i < 10) {
  i++;
  j++;
}
assert (i-j==0)

@(i==j)
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i = 0; 
j = 0;
while  
(i < 10) {
  i++;
  j++;
}
assert (i-j==0)

@(i==j)

무한히 많은 불변 성질들 (i >= 0,j >= 0,i == 
j,true,…) 가운데 증명에 성공하는 것이 필요
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Example: Bubble Sort

@pre : >
@post : sorted(rv, 0, |rv| � 1)
bool BubbleSort (int a[]) {

int[] a := a0

@L1

2

4
�1  i < |a|
^ partitioned(a, 0, i, i + 1, |a| � 1)
^ sorted(a, i, |a| � 1)

3

5

for (int i := |a| � 1; i > 0; i := i � 1) {

@L2

2

664

1  i < |a| ^ 0  j  i
^ partitioned(a, 0, i, i + 1, |a| � 1)
^ partitioned(a, 0, j � 1, j, j)
^ sorted(a, i, |a| � 1)

3

775

for (int j := 0; j < i; j := j + 1) {
if (a[j] > a[j + 1]) {

int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}

partitioned(a, l1, u1, l2, u2) () 8i, j. l1  i  u1 < l2  j  u2 ! a[i]  a[j].
Hakjoo Oh AAA528 2021 Spring, Lecture 6 June 14, 2021 15 / 55

Example: Binary Search

It behaves correctly only when l � 0, u < |a|, and a is sorted.

It returns true i↵ the array a contains the value e in the range [l, u].

@pre : 0  l ^ u < |a| ^ sorted(a, l, u)
@post : rv $ 9i.l  i  u ^ a[i] = e
bool BinarySearch (int a[], int l, int u, int e) {
if (l > u) return false;
else {
int m := (l + u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) return BinarySearch (a,m + 1, u, e)
else return BinarySearch (a, l,m � 1, e)

}
}

sorted(a, l, u) () 8i, j.l  i  j  u ! a[i]  a[j]

Hakjoo Oh AAA528 2021 Spring, Lecture 6 June 14, 2021 10 / 55

Running Example 3: Bubble Sort

bool BubbleSort (int a[]) {
int[] a := a0

for (int i := |a| � 1; i > 0; i := i � 1) {
for (int j := 0; j < i; j := j + 1) {
if (a[j] > a[j + 1]) {
int t := a[j];
int a[j] := a[j + 1];
int a[j + 1] := t;

}
}

}
return a;

}

Hakjoo Oh AAA528 2021 Spring, Lecture 6 June 14, 2021 5 / 55
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ABSTRACT
This experience report describes a style of applying symbolic model
checking developed over the course of four years at Amazon Web
Services (AWS). Lessons learned are drawn from proving properties
of numerous C-based systems, e.g., custom hypervisors, encryp-
tion code, boot loaders, and an IoT operating system. Using our
methodology, we find that we can prove the correctness of industrial
low-level C-based systems with reasonable effort and predictability.
Furthermore, AWS developers are increasingly writing their own
formal specifications. All proofs discussed in this paper are publicly
available on GitHub.

CCS CONCEPTS
• Software and its engineering→ Formal software verification;
Model checking; Correctness; •Theory of computation→ Program
reasoning.

KEYWORDS
Continuous Integration, Model Checking, Memory Safety.
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1 INTRODUCTION
This is a report on making code-level proof via model checking
a routine part of the software development workflow in a large
industrial organization. Formal verification of source code can have
a significant positive impact on the quality of industrial code. In
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classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
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ACM ISBN 978-1-4503-7123-0/20/05.
https://doi.org/10.1145/3377813.3381347

particular, formal specification of code provides precise, machine-
checked documentation for developers and consumers of a code
base. They improve code quality by ensuring that the program’s
implementation reflects the developer’s intent. Unlike testing, which
can only validate code against a set of concrete inputs, formal proof
can assure that the code is both secure and correct for all possible
inputs.

Unfortunately, rapid proof development is difficult in cases where
proofs are written by a separate specialized team and not the software
developers themselves. The developer writing a piece of code has
an internal mental model of their code that explains why, and under
what conditions, it is correct. However, this model typically remains
known only to the developer. At best, it may be partially captured
through informal code comments and design documents. As a result,
the proof team must spend significant effort to reconstruct the formal
specification of the code they are verifying. This slows the process
of developing proofs.

Over the course of four years developing code-level proofs in
Amazon Web Services (AWS), we have developed a proof methodol-
ogy that allows us to produce proofs with reasonable and predictable
effort. For example, using these techniques, one full-time verification
engineer and two interns were able to specify and verify 171 entry
points over 9 key modules in the AWS C Common1 library over a
period of 24 weeks (see Sec. 3.2 for a more detailed description of
this library). All specifications, proofs, and related artifacts (such as
continuous integration reports), described in this paper have been
integrated into the main AWS C Common repository on GitHub, and
are publicly available at https://github.com/awslabs/aws-c-common/.

1.1 Methodology
Our methodology has four key elements, all of which focus on com-
municating with the development team using artifacts that fit their
existing development practices. We find that of the many different
ways we have approached verification engagements, this combina-
tion of techniques has most deeply involved software developers in
the proof creation and maintenance process. In particular, developers
have begun to write formal functional specifications for code as they
develop it. Initially, this involved the development team asking the
verification team to assist them in writing specifications for new

1https://github.com/awslabs/aws-c-common
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Automatic Sound Complete When

Testing/
Fuzzing

Symbolic 
Execution

Static  
Analysis

Formal 
Verification

?
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