
Homework 2

COSE212, Fall 2022

Hakjoo Oh

Due: 10/5, 23:59

Academic Integrity / Assignment Policy

• All assignments must be your own work.

• Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

– Discussion must be limited to general discussion and must not involve
details of how to write code.

– You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

– Do not allow other students to copy your code.

– Do not post your code on the public web.

• Violating above rules gets you 0 points for the entire HW score.

Problem 1 Write a higher-order function

dropWhile : (’a -> bool) -> ’a list -> ’a list

which removes elements of a list while they satisfy a predicate. For example,

dropWhile (fun x -> x mod 2 = 0) [2;4;7;9]

evaluates to [7;9] and

dropWhile (fun x-> x > 5) [1;3;7]

evaluates to [1;3;7].

Problem 2 Write a higher-order function

sigma : (int -> int) -> int -> int -> int

1



such that sigma f a b computes

b∑
i=a

f(i).

For instance,
sigma (fun x -> x) 1 10

evaulates to 55 and
sigma (fun x -> x*x) 1 7

evaluates to 140.

Problem 3 Write a higher-order function

forall : (’a -> bool) -> ’a list -> bool

which decides if all elements of a list satisfy a predicate. For example,

forall (fun x -> x mod 2 = 0) [1;2;3]

evaluates to false while

forall (fun x -> x > 5) [7;8;9]

is true.

Problem 4 Write a function

uniq: ’a list -> ’a list

which removes duplicated elements from a given list so that the list contains
unique elements. For instance,

uniq [5;6;5;4] = [5;6;4]

Problem 5 In class, we defined the function reverse as follows:

let rec reverse l =

match l with

| [] -> []

| hd::tl -> (reverse tl) @ [hd]

The function is slow; its time complexity is O(n2). For instance, reverse (range

1 100000) may not terminate quickly on typical machines. However, list rever-
sal can be implemented efficiently with time complexity O(n). Write a function

fastrev : ’a list -> ’a list

that reverses a given list with in O(n). For instance, fastrev (range 1 100000)

should produce [100000; 99999; ...; 1] immediately.

2



Problem 6 Write a function

diff : aexp * string -> aexp

that differentiates the given algebraic expression with respect to the variable
given as the second argument. The algebraic expression aexp is defined as fol-
lows:

type aexp =

| Const of int

| Var of string

| Power of string * int

| Times of aexp list

| Sum of aexp list

For example, x2 + 2x + 1 is represented by

Sum [Power ("x", 2); Times [Const 2; Var "x"]; Const 1]

and differentiating it (w.r.t. “x”) gives 2x + 2, which can be represented by

Sum [Times [Const 2; Var "x"]; Const 2]

Note that the representation of 2x + 2 in aexp is not unique. For instance, the
following also represents 2x + 2:

Sum

[Times [Const 2; Power ("x", 1)];

Sum

[Times [Const 0; Var "x"];

Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Const 0]]]];

Const 0]

Problem 7 Consider the following expressions:

type exp = X

| INT of int

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| SIGMA of exp * exp * exp

Implement a calculator for the expressions:

calculator : exp -> int

For instance,
10∑
x=1

(x ∗ x− 1)

3



is represented by

SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))

and evaluating it should give 375.

Problem 8 Consider the following language:

type exp = V of var

| P of var * exp

| C of exp * exp

and var = string

In this language, a program is simply a variable, a procedure, or a procedure
call. Write a checker function

check : exp -> bool

that checks if a given program is well-formed. A program is said to be well-
formed if and only if the program does not contain free variables; i.e., every
variable name is bound by some procedure that encompasses the variable. For
example, well-formed programs are:

• P ("a", V "a")

• P ("a", P ("a", V "a"))

• P ("a", P ("b", C (V "a", V "b")))

• P ("a", C (V "a", P ("b", V "a")))

Ill-formed ones are:

• P ("a", V "b")

• P ("a", C (V "a", P ("b", V "c")))

• P ("a", P ("b", C (V "a", V "c")))

4


