Homework 2
COSE212, Fall 2022

Hakjoo Oh
Due: 10/5, 23:59

Academic Integrity / Assignment Policy

e All assignments must be your own work.

e Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

— Discussion must be limited to general discussion and must not involve
details of how to write code.

You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

Do not allow other students to copy your code.

— Do not post your code on the public web.

e Violating above rules gets you 0 points for the entire HW score.

Problem 1 Write a higher-order function
dropWhile : (’a -> bool) -> ’a list -> ’a list
which removes elements of a list while they satisfy a predicate. For example,
dropWhile (fun x -> x mod 2 = 0) [2;4;7;9]
evaluates to [7;9] and
dropWhile (fun x-> x > 5) [1;3;7]
evaluates to [1;3;7].
Problem 2 Write a higher-order function

sigma : (int -> int) -> int -> int -> int

such that sigma f a b computes

b
>0,

For instance,
sigma (fun x -> x) 1 10

evaulates to 55 and
sigma (fun x -> x*x) 1 7

evaluates to 140.
Problem 3 Write a higher-order function
forall : (’a -> bool) -> ’a list -> bool
which decides if all elements of a list satisfy a predicate. For example,
forall (fun x -> x mod 2 = 0) [1;2;3]
evaluates to false while
forall (fun x -> x > 5) [7;8;9]
is true.
Problem 4 Write a function
uniq: ’a list -> ’a list

which removes duplicated elements from a given list so that the list contains
unique elements. For instance,

uniq [5;6;5;4] = [5;6;4]
Problem 5 In class, we defined the function reverse as follows:

let rec reverse 1 =
match 1 with
[00->11
| hd::tl -> (reverse tl) @ [hd]

The function is slow; its time complexity is O(n?). For instance, reverse (range
1 100000) may not terminate quickly on typical machines. However, list rever-
sal can be implemented efficiently with time complexity O(n). Write a function

fastrev : ’a list -> ’a list

that reverses a given list with in O(n). For instance, fastrev (range 1 100000)
should produce [100000; 99999; ...; 1] immediately.

Problem 6 Write a function
diff : aexp * string -> aexp

that differentiates the given algebraic expression with respect to the variable
given as the second argument. The algebraic expression aexp is defined as fol-
lows:
type aexp =

| Const of int

| Var of string

| Power of string * int

| Times of aexp list

| Sum of aexp list

For example, z2 + 2z + 1 is represented by
Sum [Power ("x", 2); Times [Const 2; Var "x"]; Const 1]
and differentiating it (w.r.t. “x”) gives 2z + 2, which can be represented by
Sum [Times [Const 2; Var "x"]; Const 2]

Note that the representation of 22 + 2 in aexp is not unique. For instance, the
following also represents 2x + 2:

Sum
[Times [Const 2; Power ("x", 1)];
Sum
[Times [Const 0; Var "x"];
Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Comnst 0]]111];
Const 0]

Problem 7 Consider the following expressions:

type exp = X
| INT of int
| ADD of exp * exp
| SUB of exp * exp
| MUL of exp * exp
| DIV of exp * exp
|

SIGMA of exp * exp * exp

Implement a calculator for the expressions:
calculator : exp -> int

For instance,
10

Z(x*x—l)

=1

is represented by
SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))
and evaluating it should give 375.

Problem 8 Consider the following language:

type exp = V of var
| P of var * exp
| C of exp * exp
and var = string

In this language, a program is simply a variable, a procedure, or a procedure
call. Write a checker function

check : exp -> bool

that checks if a given program is well-formed. A program is said to be well-
formed if and only if the program does not contain free variables; i.e., every
variable name is bound by some procedure that encompasses the variable. For
example, well-formed programs are:

e P ("a", V "a"

o P ("a", P ("a", V "a"))

e P ("a", P ("b", C (V "a", V "b")))

e P ("a", C (V "a", P ("b", V "a")))
Ill-formed ones are:

eP ("a", V "b")

e P ("a", C (V "a", P ("b", V "c™)))

Y P (Ila"’ P (llbll’ C (V llall’ V Ilcll)))

