
Homework 1

COSE212, Fall 2022

Hakjoo Oh

Due: 9/26, 23:59

Academic Integrity / Assignment Policy

• All assignments must be your own work.

• Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

– Discussion must be limited to general discussion and must not involve
details of how to write code.

– You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

– Do not allow other students to copy your code.

– Do not post your code on the public web.

• Violating above rules gets you 0 points for the entire HW score.

Problem 1 Consider the following triangle (it is called Pascal’s triangle):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
· · ·

where the numbers at the edge of the triangle are all 1, and each number inside
the triangle is the sum of the two numbers above it. Write a function

pascal: int * int -> int

that computes elements of Pascal’s triangle. For example, pascal should behave

1

as follows:
pascal (0,0) = 1

pascal (1,0) = 1

pascal (1,1) = 1

pascal (2,1) = 2

pascal (4,2) = 6

Problem 2 Write a function

prime: int -> bool

that checks whether a number is prime (n is prime if and only if n is its own
smallest divisor except for 1). For example,

prime 2 = true

prime 3 = true

prime 4 = false

prime 17 = true

Problem 3 Write a function

range : int -> int -> int list

that takes two integers n and m, and creates a list of integers from n to m.
For example, range 3 7 produces [3;4;5;6;7]. When n > m, an empty list is
returned. For example, range 5 4 produces [].

Problem 4 Write a function

suml: int list list -> int

which takes a list of lists of integers and sums the integers included in all the
lists. For example, suml [[1;2;3]; []; [-1; 5; 2]; [7]] produces 19.

Problem 5 Write a function

lst2int : int list -> int

which converts a list of integers to an integer. For example;

lst2int [2;3;4;5] = 2345.

Problem 6 Define the function binarize:

binarize: int -> int list

that converts a decimal number to its binary representation. For example,

binarize 2 = [1; 0]

binarize 3 = [1; 1]

binarize 8 = [1; 0; 0; 0]

binarize 17 = [1; 0; 0; 0; 1]

2

Problem 7 Write two functions

max: int list -> int

min: int list -> int

that find maximum and minimum elements of a given list, respectively. For
example max [1;3;5;2] should evaluate to 5 and min [1;3;2] should be 1.

Problem 8 Binary trees can be defined as follows:

type btree =

Empty

|Node of int * btree * btree

For example, the following t1 and t2

let t1 = Node (1, Empty, Empty)

let t2 = Node (1, Node (2, Empty, Empty), Node (3, Empty, Empty))

are binary trees. Write the function

mem: int -> btree -> bool

that checks whether a given integer is in the tree or not. For example,

mem 1 t1

evaluates to true, and
mem 4 t2

evaluates to false.

Problem 9 Consider the inductive definition of binary trees:

n n ∈ Z
t

(t,nil)
t

(nil, t)

t1 t2
(t1, t2)

which can be defined in OCaml as follows:

type btree =

| Leaf of int

| Left of btree

| Right of btree

| LeftRight of btree * btree

For example, binary tree ((1, 2),nil) is represented by

Left (LeftRight (Leaf 1, Leaf 2))

Write a function that exchanges the left and right subtrees all the ways down.
For example, mirroring the tree ((1, 2),nil) produces (nil, (2, 1)); that is,

mirror (Left (LeftRight (Leaf 1, Leaf 2)))

evaluates to
Right (LeftRight (Leaf 2, Leaf 1)).

3

Problem 10 Natural numbers are defined inductively:

0

n

n + 1

In OCaml, the inductive definition can be defined by the following a data type:

type nat = ZERO | SUCC of nat

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two
functions that add and multiply natural numbers:

natadd : nat -> nat -> nat

natmul : nat -> nat -> nat

For example,

let two = SUCC (SUCC ZERO);;

val two : nat = SUCC (SUCC ZERO)

let three = SUCC (SUCC (SUCC ZERO));;

val three : nat = SUCC (SUCC (SUCC ZERO))

natmul two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))

natadd two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))

Problem 11 Consider the following propositional formula:

type formula =

| True

| False

| Not of formula

| AndAlso of formula * formula

| OrElse of formula * formula

| Imply of formula * formula

| Equal of exp * exp

and exp =

| Num of int

| Plus of exp * exp

| Minus of exp * exp

Write the function
eval : formula -> bool

that computes the truth value of a given formula. For example,

eval (Imply (Imply (True,False), True))

evaluates to true, and

eval (Equal (Num 1, Plus (Num 1, Num 2)))

evaluates to false.

4

Problem 12 A binary mobile consists of two branches, a left branch and a
right branch. Each branch is a rod of a certain length, from which hangs either
a weight or another binary mobile. In OCaml datatype, a binary mobile can be
defined as follows:

type mobile = branch * branch (* left and rigth branches *)

and branch = SimpleBranch of length * weight

| CompoundBranch of length * mobile

and length = int

and weight = int

A branch is either a simple branch, which is constructed from a length together
with a weight, or a compound branch, which is constructed from a length to-
gether with another mobile. For instance, the mobile

is represented by the following:

(CompoundBranch (3,

(CompoundBranch (2, (SimpleBranch (1, 1), SimpleBranch (1, 1))),

SimpleBranch (1, 4))),

SimpleBranch (6, 3))

Define the function

balanced : mobile -> bool

that tests whether a binary mobile is balanced. A mobile is said to be balanced if
the torque applied by its top-left branch is equal to that applied by its top-right
branch (that is, if the length of the left rod multiplied by the weight hanging
from that rod is equal to the corresponding product for the right side) and if
each of the submobiles hanging off its branches is balanced. For example, the
example mobile above is balanced.

5

