COSE212: Programming Languages

Lecture 4 - Recursive and Higher-Order Programming

Hakjoo Oh
2019 Fall

Why Recursive and Higher-Order Programming?

Recursion and higher-order functions are essential in functional programming:

- Recursion is used instead of loops and provides a powerful problem-solving method.
- Higher-order functions provide a powerful means for abstractions (i.e. the capability of combining simple ideas to form more complex ideas).

The Power of Recursive Thinking

Quiz) Describe an algorithm to draw the following pattern:

Recursive Problem-Solving Strategy

- If the problem is sufficiently small, directly solve the problem.
- Otherwise,
(1) Decompose the problem to smaller ones with the same structure as original.
(2) Solve each of those smaller problems.
(3) Combine the results to get the overall solution.

Example: list length

- If the list is empty, the length is $\mathbf{0}$.
- Otherwise,
(1) The list can be split into its head and tail.
(2) Compute the length of the tail.
(3) The overall solution is the length of the tail plus one.

```
# length [];;
- : int = 0
# length [1;2;3];;
- : int = 3
let rec length l =
    match l with
    | [] -> 0
    | hd::tl -> 1 + length tl
```


Exercise 1: append

Write a function that appends two lists:

```
# append [1; 2; 3] [4; 5; 6; 7];;
- : int list = [1; 2; 3; 4; 5; 6; 7]
# append [2; 4; 6] [8; 10];;
- : int list = [2; 4; 6; 8; 10]
let rec append l1 12 =
```


Exercise 2: reverse

Write a function that reverses a given list:

```
val reverse : 'a list -> 'a list = <fun>
# reverse [1; 2; 3];;
- : int list = [3; 2; 1]
# reverse ["C"; "Java"; "OCaml"];;
- : string list = ["OCaml"; "Java"; "C"]
let rec reverse l =
```


Exercise 3: nth-element

Write a function that computes nth element of a list:

```
# nth [1;2;3] 0;;
- : int = 1
# nth [1;2;3] 1;;
- : int = 2
# nth [1;2;3] 2;;
- : int = 3
# nth [1;2;3] 3;;
Exception: Failure "list is too short".
let rec nth l n =
    match l with
    | [] -> raise (Failure "list is too short")
    | hd::tl -> (* ... *)
```


Exercise 4: remove-first

Write a function that removes the first occurrence of an element from a list:

```
# remove_first 2 [1; 2; 3];;
- : int list = [1; 3]
# remove_first 2 [1; 2; 3; 2];;
- : int list = [1; 3; 2]
# remove_first 4 [1;2;3];;
- : int list = [1; 2; 3]
# remove_first [1; 2] [[1; 2; 3]; [1; 2]; [2; 3]];;
- : int list list = [[1; 2; 3]; [2; 3]]
let rec remove_first a l =
    match l with
    | [] -> []
    | hd::tl -> (* ... *)
```


Exercise 5: insert

Write a function that inserts an element to a sorted list:

```
# insert 2 [1;3];;
- : int list = [1; 2; 3]
# insert 1 [2;3];;
- : int list = [1; 2; 3]
# insert 3 [1;2];;
- : int list = [1; 2; 3]
# insert 4 [];;
- : int list = [4]
let rec insert a l =
    match l with
    | [] -> [a]
    | hd::tl -> (* ... *)
```


Exercise 6: insertion sort

Write a function that performs insertion sort:

```
let rec sort l =
    match l with
    | [] -> []
    | hd::tl -> insert hd (sort tl)
cf) Compare with "C-style" non-recursive version:
```

```
for \((c=1 ; c<=n-1 ; c++)\{\)
```

for $(c=1 ; c<=n-1 ; c++)\{$
$\mathrm{d}=\mathrm{c}$;
$\mathrm{d}=\mathrm{c}$;
while (d > 0 \&\& array[d] < array[d-1]) \{
while (d > 0 \&\& array[d] < array[d-1]) \{
$\mathrm{t} \quad=\operatorname{array}[\mathrm{d}]$;
$\mathrm{t} \quad=\operatorname{array}[\mathrm{d}]$;
$\operatorname{array}[d]=\operatorname{array}[d-1]$;
$\operatorname{array}[d]=\operatorname{array}[d-1]$;
$\operatorname{array}[d-1]=\mathrm{t}$;
$\operatorname{array}[d-1]=\mathrm{t}$;
d--;
d--;
\}
\}
\}

```
\}
```


cf) Imperative vs. Functional Programming

- Imperative programming focuses on describing how to accomplish the given task:

```
int factorial (int n) {
    int i; int r = 1;
    for (i = 0; i < n; i++)
    r = r * i;
    return r;
}
```

Imperative languages encourage to use statements and loops.

- Functional programming focuses on describing what the program must accomplish:
let rec factorial $\mathrm{n}=$
if $\mathrm{n}=0$ then 1 else $\mathrm{n} *$ factorial ($\mathrm{n}-1$)
Functional languages encourage to use expressions and recursion.

Is Recursion Expensive?

- In C and Java, we are encouraged to avoid recursion because function calls consume additional memory.

```
void f() { f(); } /* stack overflow */
```

- This is not true in functional languages. The same program in ML iterates forever:
let rec f () =f ()

Tail-Recursive Functions

More precisely, tail-recursive functions are not expensive in ML. A recursive call is a tail call if there is nothing to do after the function returns.

- let rec last $1=$ match l with
| [a] -> a
| _::tl -> last tl
- let rec factorial a =
if $a=1$ then 1
else a * factorial (a - 1)
Languages like ML, Scheme, Scala, and Haskell do tail-call optimization, so that tail-recursive calls do not consume additional amount of memory.

cf) Transforming to Tail-Recursive Functions

Non-tail-recursive factorial:
let rec factorial a =
if $a=1$ then 1
else a * factorial (a - 1)
Tail-recursive version:
let rec fact product counter maxcounter = if counter > maxcounter then product else fact (product * counter) (counter + 1) maxcounter
let factorial $\mathrm{n}=$ fact 11 n

Higher-Order Functions

- Higher-order functions are functions that manipulate procedures; they take other functions or return functions as results.
- Higher-order functions provide a powerful tool for building abstractions and allow code reuse.

Abstractions

- A good programming language provides powerful abstraction mechanisms (i.e. the means for combining simple ideas to form more complex ideas). E.g.,
- variables: the means for using names to refer to values
- functions: the means for using names to refer to compound operations
- For example, suppose we write a program that computes $2^{3}+3^{3}+4^{3}$.
- Without functions, we have to work at the low-level:

$$
2 * 2 * 2+3 * 3 * 3+4 * 4 * 4
$$

- Functions allow use to express the concept of cubing and write a high-level program.
let cube $\mathrm{n}=\mathrm{n} * \mathrm{n} * \mathrm{n}$
in cube $2+$ cube $3+$ cube 4
- Every programming language provides variables and functions.
- Not all programming languages provide mechanisms for abstracting same programming patterns.
- Higher-order functions serve as powerful mechanisms for this.

Example 1: map

Three similar functions:
let rec inc_all l =
match l with
| [] -> []
| hd::tl -> (hd+1)::(inc_all tl)
let rec square_all l =
match l with
| [] -> []
| hd::tl -> (hd*hd)::(square_all tl)
let rec cube_all l =
match l with
| [] -> []
| hd::tl -> (hd*hd*hd)::(cube_all tl)

Example 1: map

The code pattern can be captured by the higher-order function map:

```
let rec map f l =
    match l with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)
```

With map, the functions can be defined as follows:
let inc $\mathrm{x}=\mathrm{x}+1$
let inc_all l = map inc l
let square $\mathrm{x}=\mathrm{x} * \mathrm{x}$
let square_all l = map square 1
let cube $\mathrm{x}=\mathrm{x} * \mathrm{x} * \mathrm{x}$
let cube_all l = map cube l

Or, using nameless functions:
let inc_all l = map (fun x -> x + 1) l
let square_all $1=\operatorname{map}(f u n x->x * x) l$
let cub_all $\mathrm{l}=\operatorname{map}(f u n \mathrm{x}->\mathrm{x} * \mathrm{x} * \mathrm{x}$) l

Exercise

(1) What is the type of map?
(2) What does

$$
\operatorname{map}(f u n x \bmod 2=1)[1 ; 2 ; 3 ; 4]
$$

evaluate to?

Example 2: filter

```
let rec even l =
    match l with
    | [] -> []
    | hd::tl ->
    if hd mod 2 = 0 then hd::(even tl)
    else even tl
let rec greater_than_five l =
    match l with
    | [] -> []
    | hd::tl ->
    if hd > 5 then hd::(greater_than_five tl)
    else greater_than_five tl
```


Example 2: filter

filter : ('a -> bool) -> 'a list -> 'a list

- even $=$
- greater_than_five

Example 3: fold_right

Two similar functions:

```
let rec sum l =
    match l with
    | [] -> 0
    | hd::tl -> hd + (sum tl)
let rec prod l =
    match l with
    | [] -> 1
    | hd::tl -> hd * (prod tl)
# sum [1; 2; 3; 4];;
- : int = 10
# prod [1; 2; 3; 4];;
- : int = 24
```


Example 3: fold_right

The code pattern can be captured by the higher-oder function fold:

```
let rec fold_right f l a =
    match l with
    | [] -> a
    | hd::tl -> f hd (fold_right f tl a)
let sum lst = fold_right (fun x y -> x + y) lst 0
let prod lst = fold_right (fun x y -> x * y) lst 1
```


fold_right vs. fold_left

```
let rec fold_right f 1 a =
    match l with
    | [] -> a
    | hd::tl -> f hd (fold_right f tl a)
let rec fold_left f a l =
    match 1 with
    | [] -> a
    | hd::tl -> fold_left f (f a hd) tl
```


fold_right vs. fold_left

- Direction:
- fold_right works from left to right:

$$
\text { fold_right } f[x ; y ; z] \text { init }=f x \text { (f y (f z init)) }
$$

- fold_left works from right to left

$$
\text { fold_left } f \text { init }[x ; y ; z]=f(f(f \text { init } x) y) z
$$

- They may produce different results if f is not associative
- Types:

- fold_left is tail-recursion

Exercises

- let rec length l =
match l with
| [] -> 0
| hd::tl -> 1 + length tl
- let rec reverse $1=$
match l with
| [] -> []
| hd::tl -> (reverse tl) @ [hd]
- let rec is_all_pos l =
match l with
| [] -> true
| hd::tl -> (hd > 0) \&\& (is_all_pos tl)
- map f l =
- filter f $1=$

Functions as Returned Values

Functions can be returned from the other functions. For example, let f and \boldsymbol{g} be two one-argument functions. The composition of \boldsymbol{f} after \boldsymbol{g} is defined to be the function $x \mapsto f(\boldsymbol{g}(\boldsymbol{x}))$. In OCaml:
let compose $f \mathrm{~g}=\mathrm{fun} \mathrm{x} \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{x}))$
What is the value of the expression?

```
((compose square inc) 6)
```


Summary

Two mechanisms play key roles for writing concise and readable code in programming:

- Recursion provides a powerful problem-solving strategy.
- Higher-order functions provide a powerful means for abstractions.

