
COSE212: Programming Languages

Lecture 3 — Basics of OCaml

Hakjoo Oh
2019 Fall

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 1 / 47

Why Functional Programming?

Most Popular Programming Languages (Stackoverflow, 2018)

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 2 / 47

Why Functional Programming?

Most Popular Programming Languages (Stackoverflow, 2018)

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 2 / 47

Why Functional Programming?

Top Paying Programming Languages (Stackoverflow, 2018):

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 3 / 47

Why Functional Programming?

Functional languages are increasingly used in industry:

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 4 / 47

Why Functional Programming?

Functional programming, as opposed to imperative programming,
provides a new and important frame of thinking

Many modern programming languages has been inspired by functional
languages

Learning functional languages helps to understand foundational ideas
in programming

Writing programs in functional languages is concise and pleasurable

and many more

Basic knowledge that every SW majors should have

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 5 / 47

Why Functional Programming in OCaml?

OCaml is a good programming language:

functional programming: scala, java8, haskell, python, JavaScript, etc

static type system: scala, java, haskell, etc

automatic type inference: scala, haskell, etc

pattern matching: scala, etc

algebraic data types, module system, etc

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 6 / 47

Basics of the Language

Expressions

Names

Functions

Pattern matching

Type inference

Tuples and lists

Data types

Exceptions

Write and run all examples in the slides by yourself!

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 7 / 47

An OCaml Program is an Expression

Statement and expressions:

A statement does something.

An expression evaluates to a value.

Programming languages can be classified into

statement-oriented: C, C++, Java, Python, JavaScript, etc
I often called “imperative languages”

expression-oriented: ML, Haskell, Scala, Lisp, etc
I often called “functional languages”

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 8 / 47

Basic Structure of OCaml Programs

An OCaml program is a sequence of definitions:

let x1 = e1
let x2 = e2

...
let xn = en

e1, e2, . . . , en are evaluated in order

Variable xi refers to the value of ei

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 9 / 47

Example

Hello World:

let hello = "Hello"

let world = "World"

let helloworld = hello ^ " " ^ world

let _ = print_endline helloworld

Interpreter:

$ ocaml helloworld.ml

Hello World

REPL (Read-Eval-Print-Loop)

$ ocaml

OCaml version 4.04.0

let hello = "Hello";;

val hello : string = "Hello"

let world = "World";;

val world : string = "World"

let helloworld = hello ^ " " ^ world;;

val helloworld : string = "Hello World"

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 10 / 47

Arithmetic Expressions

Arithmetic expressions evaluate to numbers: e.g., 1+2*3, 1+5, 7

Try to evaluate expressions in the REPL:

1+2*3;;

- : int = 7

Arithmetic operators on integers:

a + b addition
a - b subtraction
a * b multiplication
a / b divide a by b, returning the whole part
a mod b divide a by b, returning the remaining part

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 11 / 47

Boolean Expressions

Boolean expressions evaluate to boolean values (i.e., true, false).

Try to evaluate boolean expressions:

true;;

- : bool = true

false;;

- : bool = false

1 > 2;;

- : bool = false

Comparison operators produces boolean values:

a = b true if a and b are equal
a <> b true if a and b are not equal
a < b true if a is less than b
a <= b true if a is less than or equal to b
a > b true if a is greater than b
a >= b true if a is greater than or equal to b

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 12 / 47

Boolean Operators

Boolean expressions are combined by boolean operators:

true && false;;

- : bool = false

true || false;;

- : bool = true

(2 > 1) && (3 > 2);;

- : bool = true

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 13 / 47

ML is a Statically Typed Language

If you try to evaluate an expression that does not make sense, OCaml
rejects and does not evaluate the program: e.g.,

1 + true;;

Error: This expression has type bool but an expression was

expected of type int

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 14 / 47

Static Types and Dynamic Types

Programming languages are classified into:

Statically typed languages: type checking is done at compile-time.
I type errors are detected before program executions
I C, C++, Java, ML, Scala, etc

Dynamically typed languages: type checking is done at run-time.
I type errors are detected during program executions
I Python, JavaScript, Ruby, Lisp, etc

Statically typed languages are further classified into:

Type-safe languages guarantee that compiled programs do not have
type errors at run-time.

I All type errors are detected at compile time.
I Compiled programs do not stuck.
I ML, Haskell, Scala

Unsafe languages do not provide such a guarantee.
I Some type errors remain at run-time.
I C, C++

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 15 / 47

cf) Which one is better?

Statically typed languages:

(+) Type errors are caught early in the development cycle.

(+) Program execution is efficient by omitting runtime checks.

(−) Less flexible than dynamic languages.

Dynamically typed languages:

(−) Type errors appear at run-time, often unexpectedly.

(+) Provide more flexible language features.

(+) Easy and fast prototyping.

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 16 / 47

Conversion between Different Types

In OCaml, different types of values are distinguished:

3 + 2.0;;

Error: This expression has type float but an expression

was expected of type int

Types must be explicitly converted:

3 + int_of_float 2.0;;

- : int = 5

Operators for floating point numbers:

1.2 +. 2.3;;

- : float = 3.5

1.5 *. 2.0;;

- : float = 3.

float_of_int 1 +. 2.2;;

- : float = 3.2

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 17 / 47

Other Primitive Values

OCaml provides six primitive values: integers, booleans, floating point
numbers, characters, strings, and unit.

’c’;;

- : char = ’c’

"cose212";;

- : string = "cose212"

();;

- : unit = ()

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 18 / 47

Conditional Expressions

if be then e1 else e2

If be is true, the value of the conditional expression is the value of e1.

If be is false, the value of the expression is the value of e2.

if 2 > 1 then 0 else 1;;

- : int = 0

if 2 < 1 then 0 else 1;;

- : int = 1

be must be a boolean expression.

types of e1 and e2 must be equivalent.

if 1 then 1 else 2;;

Error: ...

if true then 1 else true;;

Error: ...

if true then true else false;;

- : bool = true

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 19 / 47

Names and Functions

Create a global variable with the let keyword:

let x = 3 + 4;;

val x : int = 7

We say a variable x is bound to value 7.

let y = x + x;;

val y : int = 14

Create a local variable with let ... in ... construct:

let x = e1 in e2

I x is bound to the value of e1
I the scope of x is e2
I the value of e2 becomes the value of the entire expression

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 20 / 47

Examples

let a = 1 in a;;

- : int = 1

let a = 1 in a * 2;;

- : int = 2

let a = 1 in

let b = a + a in

let c = b + b in

c + c;;

- : int = 8

let d =

let a = 1 in

let b = a + a in

let c = b + b in

c + c;;

val d : int = 8

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 21 / 47

Functions

Define a function with let:

let square x = x * x;;

val square : int -> int = <fun>

Apply the function:

square 2;;

- : int = 4

square (2 + 5);;

- : int = 49

square (square 2);;

- : int = 16

The body can be any expression:

let neg x = if x < 0 then true else false;;

val neg : int -> bool = <fun>

neg 1;;

- : bool = false

neg (-1);;

- : bool = true

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 22 / 47

Functions

Functions with multiple arguments:

let sum_of_squares x y = (square x) + (square y);;

val sum_of_squares : int -> int -> int = <fun>

sum_of_squares 3 4;;

- : int = 25

Recursive functions are defined with let rec construct:

let rec factorial a =

if a = 1 then 1 else a * factorial (a - 1);;

val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 23 / 47

Nameless Functions

Many modern programming languages provide nameless functions,
e.g., ML, Scala, Java8, JavaScript, Python, etc.

In OCaml, a function can be defined without names:

fun x -> x * x;;

- : int -> int = <fun>

Called nameless or anonymous functions.

Apply nameless function as usual:

(fun x -> x * x) 2;;

- : int = 4

A variable can be bound to functions:

let square = fun x -> x * x;;

val square : int -> int = <fun>

The followings are equivalent:

let square = fun x -> x * x

let square x = x * x

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 24 / 47

Functions are First-Class in OCaml

In programming languages, a value is first-class, if the value can be

stored in a variable,

passed as an argument of a function, and

returned from other functions.

A language is often called functional, if functions are first class values,
e.g., ML, Scala, Java8, JavaScript, Python, Lisp, etc.

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 25 / 47

Functions are First-Class in OCaml

Functions can be stored in variables:

let square = fun x -> x * x;;

square 2;;

- : int = 4

Functions can be passed to other functions:

let sum_if_true test first second =

(if test first then first else 0)

+ (if test second then second else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

let even x = x mod 2 = 0;;

val even : int -> bool = <fun>

sum_if_true even 3 4;;

- : int = 4

sum_if_true even 2 4;;

- : int = 6

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 26 / 47

Functions are First-Class in OCaml

Functions can be also returned from a procedure:

let plus_a a = fun b -> a + b;;

val plus_a : int -> int -> int = <fun>

let f = plus_a 3;;

val f : int -> int = <fun>

f 1;;

- : int = 4

f 2;;

- : int = 5

Functions that manipulate functions are called higher-order functions.

i.e., functions that take as argument functions or return functions

greatly increase the expressiveness of the language

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 27 / 47

Pattern Matching

An elegant way of doing case analysis.

E.g., using pattern-matching, the factorial function

let rec factorial a =

if a = 1 then 1 else a * factorial (a - 1)

can be written as follows:

let factorial a =

match a with

1 -> 1

|_ -> a * factorial (a - 1)

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 28 / 47

Pattern Matching

The nested if-then-else expression

let isabc c = if c = ’a’ then true

else if c = ’b’ then true

else if c = ’c’ then true

else false

can be written using pattern matching:

let isabc c =

match c with

’a’ -> true

|’b’ -> true

|’c’ -> true

| _ -> false

or simply,

let isabc c =

match c with

’a’ | ’b’ | ’c’ -> true

| _ -> false

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 29 / 47

Type Inference

In C or Java, types must be annotated:

public static int f(int n)

{

int a = 2;

return a * n;

}

In OCaml, type annotations are not mandatory:

let f n =

let a = 2 in

a * n;;

val f : int -> int = <fun>

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 30 / 47

Type Inference

OCaml can infer types, no matter how complex the program is:

let sum_if_true test first second =

(if test first then first else 0)

+ (if test second then second else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

OCaml compiler infers the type through the following reasoning steps:

1 the types of first and second must be int, because both branches
of a conditional expression must have the same type,

2 the type of test is a function type α→ β, because test is used as
a function,

3 α must be of int, because test is applied to first, a value of int,

4 β must be of bool, because conditions must be boolean expressions,

5 the return value of the function has type int, because the two
conditional expressions are of int and their addition gives int.

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 31 / 47

Type Annotation

Explicit type annotations are possible:

let sum_if_true (test : int -> bool) (x : int) (y : int) : int =

(if test x then x else 0) + (if test y then y else 0);;

val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

If the annotation is wrong, OCaml finds the error and report it:

let sum_if_true (test : int -> int) (x : int) (y : int) : int =

(if test x then x else 0) + (if test y then y else 0);;

Error: The expression (test x) has type int but an expression

was expected of type bool

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 32 / 47

Polymorphic Types

What is the type of the program?

let id x = x

See how OCaml infers its type:

let id x = x;;

val id : ’a -> ’a = <fun>

The function works for values of any type:

id 1;;

- : int = 1

id "abc";;

- : string = "abc"

id true;;

- : bool = true

Such a function is called polymorphic and ’a is a type variable.

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 33 / 47

Polymorphic Types

Quiz) What is the type of the function?

let first_if_true test x y =

if test x then x else y

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 34 / 47

Tuples

An ordered collection of values, each of which can be a different
types, e.g.,

let x = (1, "one");;

val x : int * string = (1, "one")

let y = (2, "two", true);;

val y : int * string * bool = (2, "two", true)

Extract each component using pattern-matching:

let fst p = match p with (x,_) -> x;;

val fst : ’a * ’b -> ’a = <fun>

let snd p = match p with (_,x) -> x;;

val snd : ’a * ’b -> ’b = <fun>

or equivalently,

let fst (x,_) = x;;

val fst : ’a * ’b -> ’a = <fun>

let snd (_,x) = x;;

val snd : ’a * ’b -> ’b = <fun>

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 35 / 47

Tuples

Patterns can be used in let:

let p = (1, true);;

val p : int * bool = (1, true)

let (x,y) = p;;

val x : int = 1

val y : bool = true

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 36 / 47

Lists

A finite sequence of elements, each of which has the same type, e.g.,

[1; 2; 3]

is a list of integers:

[1; 2; 3];;

- : int list = [1; 2; 3]

Note that
I all elements must have the same type, e.g., [1; true; 2] is not a list,
I the elements are ordered, e.g., [1; 2; 3] 6= [2; 3; 1], and
I the first element is called head, the rest tail.

[]: the empty list, i.e., nil. What are head and tail of []?

[5]: a list with a single element. What are head and tail of [5]?

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 37 / 47

List Examples

[1;2;3;4;5];;

- : int list = [1; 2; 3; 4; 5]

["OCaml"; "Java"; "C"];;

- : string list = ["OCaml"; "Java"; "C"]

[(1,"one"); (2,"two"); (3,"three")];;

- : (int * string) list = [(1, "one"); (2, "two"); (3, "three")]

[[1;2;3];[2;3;4];[4;5;6]];;

- : int list list = [[1; 2; 3]; [2; 3; 4]; [4; 5; 6]]

[1;"OCaml";3] ;;

Error: This expression has type string but an expression was

expected of type int

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 38 / 47

List Operators

:: (cons): add a single element to the front of a list, e.g.,

1::[2;3];;

- : int list = [1; 2; 3]

1::2::3::[];;

- : int list = [1; 2; 3]

([1; 2; 3] is a shorthand for 1::2::3::[])

@ (append): combine two lists, e.g.,

[1; 2] @ [3; 4; 5];;

- : int list = [1; 2; 3; 4; 5]

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 39 / 47

Patterns for Lists

Pattern matching is useful for manipulating lists.

A function to check if a list is empty:

let isnil l =

match l with

[] -> true

|_ -> false;;

val isnil : ’a list -> bool = <fun>

isnil [1];;

- : bool = false

isnil [];;

- : bool = true

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 40 / 47

Patterns for Lists

A function that computes the length of lists:

let rec length l =

match l with

[] -> 0

|h::t -> 1 + length t;;

val length : ’a list -> int = <fun>

length [1;2;3];;

- : int = 3

We can replace pattern h by _:

let rec length l =

match l with

[] -> 0

|_::t -> 1 + length t;;

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 41 / 47

Data Types

If data elements are finite, just enumerate them, e.g., “days”:

type days = Mon | Tue | Wed | Thu | Fri | Sat | Sun;;

type days = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Construct values of the type:

Mon;;

- : days = Mon

Tue;;

- : days = Tue

A function that manipulates the defined data:

let nextday d =

match d with

| Mon -> Tue | Tue -> Wed | Wed -> Thu | Thu -> Fri

| Fri -> Sa | Sat -> Sun | Sun -> Mon ;;

val nextday : days -> days = <fun>

nextday Mon;;

- : days = Tue

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 42 / 47

Data Types

Constructors can be associated with values, e.g.,
type shape = Rect of int * int | Circle of int;;

type shape = Rect of int * int | Circle of int

Construct values of the type:
Rect (2,3);;

- : shape = Rect (2, 3)

Circle 5;;

- : shape = Circle 5

A function that manipulates the data:
let area s =

match s with

Rect (w,h) -> w * h

| Circle r -> r * r * 3;;

val area : shape -> int = <fun>

area (Rect (2,3));;

- : int = 6

area (Circle 5);;

- : int = 75

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 43 / 47

Data Types

Inductive data types, e.g.,
type mylist = Nil | List of int * mylist;;

type mylist = Nil | List of int * mylist

Construct values of the type:
Nil;;

- : mylist = Nil

List (1, Nil);;

- : mylist = List (1, Nil)

List (1, List (2, Nil));;

- : mylist = List (1, List (2, Nil))

A function that manipulates the data:
let rec mylength l =

match l with

Nil -> 0

|List (_,l’) -> 1 + mylength l’;;

val mylength : mylist -> int = <fun>

mylength (List (1, List (2, Nil)));;

- : int = 2

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 44 / 47

Exceptions

An exception means a run-time error: e.g.,

let div a b = a / b;;

val div : int -> int -> int = <fun>

div 10 5;;

- : int = 2

div 10 0;;

Exception: Division_by_zero.

The exception can be handled with try ... with constructs.

let div a b =

try

a / b

with Division_by_zero -> 0;;

val div : int -> int -> int = <fun>

div 10 5;;

- : int = 2

div 10 0;;

- : int = 0

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 45 / 47

Exceptions

User-defined exceptions: e.g.,

exception Problem;;

exception Problem

let div a b =

if b = 0 then raise Problem

else a / b;;

val div : int -> int -> int = <fun>

div 10 5;;

- : int = 2

div 10 0;;

Exception: Problem.

try

div 10 0

with Problem -> 0;;

- : int = 0

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 46 / 47

Summary

We’ve gone through the basics of OCaml programming:

Expressions

Names

Functions

Pattern matching

Type inference

Tuples and lists

Data types

Exceptions

Hakjoo Oh COSE212 2019 Fall, Lecture 3 September 9, 2019 47 / 47

