COSE212: Programming Languages

Lecture 15 - Automatic Type Inference (3)

Hakjoo Oh
2019 Fall

Finding a Solution of Type Equations

Find the values of type variables that make all the equations true.

Equations	Solution
$t_{0}=t_{f} \rightarrow t_{1}$	$t_{0}=($ int \rightarrow int $) \rightarrow($ int \rightarrow int $)$
$t_{1}=t_{x} \rightarrow t_{2}$	$\boldsymbol{t}_{\mathbf{1}}=$ int \rightarrow int
$t_{3}=$ int	$t_{2}=$ int
$t_{4}=$ int	$t_{3}=$ int
$t_{2}=$ int	$t_{4}=$ int
$\boldsymbol{t}_{\boldsymbol{f}}=\mathrm{int} \rightarrow t_{3}$	$\boldsymbol{t}_{\boldsymbol{f}}=$ int \rightarrow int
$t_{f}=t_{x} \rightarrow t_{4}$	$\boldsymbol{t}_{\boldsymbol{x}}=$ int

Static type systems find such a solution using unification algorithm.

Example 1

The calculation is split into equations to be solved and substitution found so far. Initially, the substitution is empty:

| Equations | Substitution |
| ---: | :--- | :--- |
| $\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{\boldsymbol{f}} \rightarrow \boldsymbol{t}_{1}$ | |
| $\boldsymbol{t}_{\mathbf{1}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{2}$ | |
| $\boldsymbol{t}_{\mathbf{3}}=$ int | |
| $\boldsymbol{t}_{\mathbf{4}}=$ int | |
| $\boldsymbol{t}_{\mathbf{2}}=$ int | |
| $\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\boldsymbol{3}}$ | |
| $\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{4}}$ | |

Example 1

Consider each equation in turn. If the equation's left-hand side is a variable, move it to the substitution:

Equations	Substitution
$\boldsymbol{t}_{\mathbf{1}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{2}}$	$\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{\boldsymbol{f}} \rightarrow \boldsymbol{t}_{\mathbf{1}}$
$\boldsymbol{t}_{\mathbf{3}}=$ int	
$\boldsymbol{t}_{\boldsymbol{4}}=$ int	
$\boldsymbol{t}_{\mathbf{2}}=$ int	
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\mathbf{3}}$	
$\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\boldsymbol{4}}$	

Example 1

Move the next equation to the substitution and propagate the information to the existing substitution (i.e., substitute the right-hand side for each occurrence of \boldsymbol{t}_{1}):

Equations	Substitution
$\boldsymbol{t}_{\mathbf{3}}=$ int	$\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{f} \rightarrow\left(\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{2}}\right)$
$\boldsymbol{t}_{\boldsymbol{4}}=$ int	$\boldsymbol{t}_{1}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{2}}$
$\boldsymbol{t}_{\mathbf{2}}=$ int	
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\mathbf{3}}$	
$\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{4}}$	

Example 1

Same for the next three equations:

Equations	Substitution
$\boldsymbol{t}_{\mathbf{4}}=$ int	$t_{0}=t_{f} \rightarrow\left(t_{x} \rightarrow t_{2}\right)$
$\boldsymbol{t}_{\mathbf{2}}=\mathrm{int}$	$t_{1}=t_{x} \rightarrow t_{2}$
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\mathbf{3}}$	$\boldsymbol{t}_{3}=\mathrm{int}$
$\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\boldsymbol{4}}$	
Equations	Substitution
$\boldsymbol{t}_{\mathbf{2}}=$ int	$t_{0}=t_{f} \rightarrow\left(t_{x} \rightarrow t_{2}\right)$
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\mathbf{3}}$	$t_{1}=t_{x} \rightarrow t_{2}$
$t_{f}=t_{x} \rightarrow t_{4}$	$\boldsymbol{t}_{\mathbf{3}}=$ int
	$\boldsymbol{t}_{\mathbf{4}}=$ int
Equations	Substitution
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\mathbf{3}}$	$t_{0}=t_{f} \rightarrow\left(t_{x} \rightarrow\right.$ int $)$
$\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{4}$	$\boldsymbol{t}_{\boldsymbol{1}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow$ int
	$\boldsymbol{t}_{\mathbf{3}}=\mathrm{int}$
	$\boldsymbol{t}_{\mathbf{4}}=$ int
	$\boldsymbol{t}_{2}=\mathrm{int}$

Example 1

Consider the next equation $\boldsymbol{t}_{f}=\mathrm{int} \rightarrow \boldsymbol{t}_{\mathbf{3}}$. The equation contains $\boldsymbol{t}_{\mathbf{3}}$, which is already bound to int in the substitution. Substitute int for t_{3} in the equation. This is called applying the substitution to the equation.

Equations	Substitution
$\boldsymbol{t}_{\boldsymbol{f}}=$ int \rightarrow int	$\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{\boldsymbol{f}} \rightarrow\left(\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \mathrm{int}\right)$
$\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{4}$	$\boldsymbol{t}_{\mathbf{1}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow$ int
$\boldsymbol{t}_{3}=$ int	
$\boldsymbol{t}_{\mathbf{4}}=$ int	
$\boldsymbol{t}_{\mathbf{2}}=$ int	

Move the resulting equation to the substitution and update it.

Equations	Substitution
$t_{f}=t_{x} \rightarrow t_{4}$	$\begin{aligned} \boldsymbol{t}_{\mathbf{0}} & =(\text { int } \rightarrow \text { int }) \rightarrow\left(\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \mathrm{int}\right) \\ \boldsymbol{t}_{\mathbf{1}} & =\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \text { int } \\ \boldsymbol{t}_{\mathbf{3}} & =\text { int } \\ \boldsymbol{t}_{\mathbf{4}} & =\text { int } \\ \boldsymbol{t}_{\mathbf{2}} & =\text { int } \\ \boldsymbol{t}_{\boldsymbol{f}} & =\text { int } \rightarrow \text { int } \end{aligned}$

Example 1

Apply the substitution to the equation:

Equations	
int \rightarrow int $=\boldsymbol{t}_{x} \rightarrow$ int	$\boldsymbol{t}_{0}=$ (int \rightarrow int $) \rightarrow\left(t_{x} \rightarrow\right.$ int $)$
	$t_{1}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow$ int
	$\boldsymbol{t}_{3}=$ int
$\boldsymbol{t}_{4}=$ int	
	$\boldsymbol{t}_{2}=$ int
$\boldsymbol{t}_{\boldsymbol{f}}=$ int \rightarrow int	

If neither side of the equation is a variable, simplify the equation by yielding two new equations:

Equations	
int $=\boldsymbol{t}_{\boldsymbol{x}}$	$\boldsymbol{t}_{\mathbf{0}}=$ (int \rightarrow int $) \rightarrow\left(\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \mathrm{int}\right)$
int $=$ int	$\boldsymbol{t}_{\mathbf{1}}=\boldsymbol{t}_{\boldsymbol{x}} \rightarrow$ int
	$\boldsymbol{t}_{3}=$ int
	$\boldsymbol{t}_{\mathbf{4}}=$ int
	$\boldsymbol{t}_{\mathbf{2}}=$ int
$\boldsymbol{t}_{\boldsymbol{f}}=$ int \rightarrow int	

Example 1

Switch the sides of the first equation and move it to the substitution:

Equations	Substitution
int $=$ int	$\begin{aligned} & \left.\boldsymbol{t}_{\mathbf{0}}=\text { (int } \rightarrow \text { int }\right) \rightarrow(\text { int } \rightarrow \text { int }) \\ & \boldsymbol{t}_{\mathbf{1}}=\text { int } \rightarrow \text { int } \\ & \boldsymbol{t}_{\mathbf{3}}=\text { int } \\ & \boldsymbol{t}_{\mathbf{4}}=\text { int } \\ & \boldsymbol{t}_{\mathbf{2}}=\text { int } \\ & \boldsymbol{t}_{\boldsymbol{f}}=\text { int } \rightarrow \text { int } \\ & \boldsymbol{t}_{\boldsymbol{x}}=\text { int } \end{aligned}$

The final substitution is the solution of the original equations.

Example 2

Example 2

(1)

Equations	Substitution
$t_{0}=\boldsymbol{t}_{f} \rightarrow \boldsymbol{t}_{1}$	
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{1}$	

(2)

Equations	Substitution
$\boldsymbol{t}_{\boldsymbol{f}}=$ int $\rightarrow \boldsymbol{t}_{\mathbf{1}}$	$\boldsymbol{t}_{\mathbf{0}}=\boldsymbol{t}_{\boldsymbol{f}} \rightarrow \boldsymbol{t}_{\mathbf{1}}$

(3)

The type is polymorphic in $\boldsymbol{t}_{\mathbf{1}}$.

Example 3

Example 3

The equations have no solutions because, during the unification algorithm, we encounter the following contradictory state:

Equations	
bool $=$ int	$\boldsymbol{t}_{\boldsymbol{x}}=$ bool
$\boldsymbol{t}_{\mathbf{1}}=$ int	$\boldsymbol{t}_{\mathbf{1}}=$ int
	$\boldsymbol{t}_{\mathbf{0}}=$ int

Because bool and int cannot be equal, there is no solution to the equations.

Example 4

$$
\begin{aligned}
\boldsymbol{t}_{\mathbf{0}} & =\boldsymbol{t}_{f} \rightarrow \boldsymbol{t}_{1} \\
\boldsymbol{t}_{\mathbf{1}} & =\text { bool } \\
\boldsymbol{t}_{2} & =\text { int } \\
\boldsymbol{t}_{\boldsymbol{f}} & =\boldsymbol{t}_{f} \rightarrow \boldsymbol{t}_{\mathbf{2}}
\end{aligned}
$$

Example 4

Solving as usual, we encounter a problem:

Equations	Substitution
$\boldsymbol{t}_{\boldsymbol{f}}=\boldsymbol{t}_{f} \rightarrow$ int	$\boldsymbol{t}_{0}=\boldsymbol{t}_{f} \rightarrow$ bool $\boldsymbol{t}_{1}=$ bool $t_{2}=$ int

- There is no type $\boldsymbol{t}_{\boldsymbol{f}}$ that satisfies the equation, because the right-hand side of the equation is always larger than the left.
- If we ever deduce an equation of the form $t=\ldots t \ldots$ where the type variable t occurs in the right-hand side, we must conclude that there is no solution. This is called occurrence check.

Unification Algorithm

For each equation in turn,

- Apply the current substitution to the equation.
- If the equation is always true (e.g. int $=\mathrm{int}$), discard it.
- If the left- and right-hand sides are contradictory (e.g. bool $=\mathrm{int}$), the algorithm fails.
- If neither side is a variable (e.g. int $\rightarrow \boldsymbol{t}_{1}=\boldsymbol{t}_{\mathbf{2}} \rightarrow$ bool), simplify the equation, which eventually generates an equation whose left- or right-hand side is a variable.
- If the left-hand side is not a variable, switch the sides.
- If the left-hand side variable occurs in the right-hand side, the algorithm fails.
- Otherwise, move it to the substitution and substitute the right-hand side for each occurrence of the variable in the substitution.

Exercise 1

$$
\text { let } x=4 \text { in }(x 3)
$$

Exercise 2

$$
\text { let } f=\operatorname{proc}(z) z \text { in } \operatorname{proc}(x)((f x)-1)
$$

Exercise 3

let $p=$ iszero 1 in if p then 88 else 99

Exercise 4

let $f=\operatorname{proc}(x) x$ in if $(f$ (iszero0)) then (f 11) else (f 22)

Substitution

Solutions of type equations are represented by substitution:

$$
S \in S u b s t=T y \operatorname{Var} \rightarrow T
$$

Applying a substitution to a type:

$$
\begin{aligned}
S(\text { int }) & =\text { int } \\
S(\text { bool }) & =\text { bool } \\
S(\alpha) & = \begin{cases}t & \text { if } \alpha \mapsto t \in S \\
\alpha & \text { otherwise }\end{cases} \\
\boldsymbol{S}\left(\boldsymbol{T}_{1} \rightarrow \boldsymbol{T}_{2}\right) & =S\left(T_{1}\right) \rightarrow S\left(T_{2}\right)
\end{aligned}
$$

Example

Applying the substitution

$$
S=\left\{t_{1} \mapsto \text { int }, t_{2} \mapsto \text { int } \rightarrow \text { int }\right\}
$$

to to the type $\left(t_{1} \rightarrow t_{2}\right) \rightarrow\left(t_{3} \rightarrow \mathrm{int}\right):$

$$
\begin{aligned}
& S\left(\left(t_{1} \rightarrow t_{2}\right) \rightarrow\left(t_{3} \rightarrow \text { int }\right)\right) \\
& =\boldsymbol{S}\left(t_{1} \rightarrow t_{2}\right) \rightarrow \boldsymbol{S}\left(t_{3} \rightarrow \mathrm{int}\right) \\
& =\left(\boldsymbol{S}\left(t_{1}\right) \rightarrow \boldsymbol{S}\left(t_{2}\right)\right) \rightarrow\left(\boldsymbol{S}\left(t_{3}\right) \rightarrow \boldsymbol{S}(\mathrm{int})\right) \\
& =(\text { int } \rightarrow(\text { int } \rightarrow \text { int })) \rightarrow\left(t_{3} \rightarrow \text { int }\right)
\end{aligned}
$$

Unification

Update the current substitution with equality $\boldsymbol{t}_{\mathbf{1}} \doteq \boldsymbol{t}_{\mathbf{2}}$.

$$
\text { unify }: T \times T \times \text { Subst } \rightarrow \text { Subst }
$$

$$
\begin{array}{rll}
\text { unify }(\text { int, int, } S) & =S \\
\text { unify }(\text { bool, bool, } S) & = & S \\
\text { unify }(\alpha, \alpha, S) & =S \\
\text { unify }(\alpha, t, S) & = \begin{cases}\text { fail } & \alpha \text { occurs in } t \\
\text { extend } S \text { with } \alpha \doteq t & \text { otherwise }\end{cases} \\
\text { unify }(t, \alpha, S) & =\text { unify }(\alpha, t, S) & \\
\text { unify }\left(t_{1} \rightarrow t_{2}, t_{1}^{\prime} \rightarrow t_{2}^{\prime}, S\right) & = & \text { let } S^{\prime}=\text { unify }\left(t_{1}, t_{1}^{\prime}, S\right) \text { in } \\
& & \text { let } S^{\prime \prime}=\operatorname{unify}\left(S^{\prime}\left(t_{2}\right), S^{\prime}\left(t_{2}^{\prime}\right), S^{\prime}\right) \text { in } \\
& S^{\prime \prime} & \\
\text { unify }(-,,-,) & = & \text { fail }
\end{array}
$$

Exercises

- unify $(\alpha$, int \rightarrow int, $\emptyset)=$
- unify $(\alpha$, int $\rightarrow \alpha, \emptyset)=$
- unify $(\alpha \rightarrow \beta$, int \rightarrow int, $\emptyset)=$
- unify $(\alpha \rightarrow \beta$, int $\rightarrow \alpha, \emptyset)=$

Solving Equations

$$
\begin{aligned}
& \text { unifyall : TyEqn } \rightarrow \text { Subst } \rightarrow \text { Subst } \\
& \text { unifyall }(\emptyset, S)= S \\
& \text { unifyall }\left(\left(t_{1} \doteq t_{2}\right) \wedge u, S\right)= \text { let } S^{\prime}=\operatorname{unify}\left(S\left(t_{1}\right), S\left(t_{2}\right), S\right) \\
& \text { in unifyall }\left(u, S^{\prime}\right)
\end{aligned}
$$

Let \mathcal{U} be the final unification algorithm:

$$
\mathcal{U}(u)=\text { unifyall }(u, \emptyset)
$$

typeof $: E \rightarrow T$

The final type inference algorithm that composes equation derivation (\mathcal{V}) and equation solving (\mathcal{U}) :

```
typeof(E)=
    let S=UU(\mathcal{V}(\emptyset,E,\alpha)) (new }\alpha
    in S(\alpha)
```


Examples

- typeof $((\operatorname{proc}(x) x) 1)$
- typeof(let $\boldsymbol{x}=1$ in $\operatorname{proc}(\boldsymbol{y})(\boldsymbol{x}+\boldsymbol{y}))$

Summary

Automatic type inference:

- derive type equations from the program text, and
- solve the equations by unification algorithm.

