COSE212: Programming Languages

Lecture 1 - Inductive Definitions (1)

Hakjoo Oh
2019 Fall

Inductive Definitions

Inductive definition (induction) is widely used in the study of programming languages and computer science in general: e.g.,

- The syntax and semantics of programming languages
- Data structures (e.g., lists, trees, graphs)

Induction is a technique for formally defining a set:

- The set is defined in terms of itself.
- The only way of defining an infinite set by a finite means.

Three styles to inductive definition:

- Top-down
- Bottom-up
- Rules of inference

Example (Top-Down)

Let us define a certain subset S of natural numbers (\mathbb{N}) as follows:

Definition (\boldsymbol{S})

A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

The definition is inductive, because the set is defined in terms of itself. What is the set S ?

Example (Continued)

Let us see what natural numbers are in \boldsymbol{S}.

- $\mathbf{0}$ is in \boldsymbol{S} because of the first condition of the definition.
- $\mathbf{3}$ is in \boldsymbol{S} because $\mathbf{3 - 3}=\mathbf{0}$ and $\mathbf{0}$ is in \boldsymbol{S}.
- $\mathbf{6}$ is in \boldsymbol{S} because $\mathbf{6 - 3}=\mathbf{3}$ and $\mathbf{3}$ is in \boldsymbol{S}.

We can conjecture that $\{\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \ldots\} \subseteq \boldsymbol{S}$.

Proof by mathematical induction

We show that $\mathbf{3 k} \in \boldsymbol{S}$ for all $\boldsymbol{k} \in \mathbb{N}$.
(1) Base case: $3 \boldsymbol{k} \in S$ when $\boldsymbol{k}=\mathbf{0}$.
(2) Inductive case: Assume $3 k \in S$ (Induction Hypothesis, I.H.).

Then show $3 \cdot(k+1) \in S$, which holds because
$3 \cdot(k+1)-3=3 k \in S$ by the induction hypothesis.

Example (Continued)

What about other numbers? Does S contain only the multiples of $\mathbf{3}$?

- For instance, $\mathbf{1} \in \boldsymbol{S}$? No. Because the first condition is not true, the second condition must be true for $\mathbf{1}$ to be in S. However, it is not true because $\mathbf{1 - 3}=-\mathbf{2}$ is not a natural number. Similarly, we can show that $2 \notin S$.
- What about 4 ? Because $4-3=1 \notin S, 4 \notin S$.

By similar reasoning, we can conjecture that if \boldsymbol{n} is not a multiple of $\mathbf{3}$ then \boldsymbol{n} is not in \boldsymbol{S}. In other words, \boldsymbol{S} contains multiples of $\mathbf{3}$ only: i.e.,

$$
\{0,3,6,9, \ldots\} \supseteq S
$$

Proof by contradiction.

Let $\boldsymbol{n}=3 \boldsymbol{k}+\boldsymbol{q}(\boldsymbol{q}=\mathbf{1}$ or $\mathbf{2})$ and assume $\boldsymbol{n} \in S$. By the definition of \boldsymbol{S}, $n-3, n-6, \ldots, n-3 k \in S$. Thus, S must include 1 or 2 , a contradiction.

A Bottom-up Definition

An alternative inductive definition of \boldsymbol{S} :

Definition (\boldsymbol{S})

S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(1) $0 \in S$, and
(2) if $n \in S$, then $n+3 \in S$.

- The two conditions imply $\{\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \ldots\} \subseteq S$.
- The two conditions do not imply $\{\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \ldots\} \supseteq \boldsymbol{S}$. E.g.,
- \mathbb{N} satisfies the conditions: $\mathbf{0} \in \mathbb{N}$ and if $\boldsymbol{n} \in \mathbb{N}$ then $\boldsymbol{n}+\mathbf{3} \in \mathbb{N}$.
- $\{0,3,6,9, \ldots\} \cup\{1,4,7,10, \ldots\}$ satisfies the conditions.
- This is why the definition requires \boldsymbol{S} to be the smallest such a set.
- The smallest set that satisfies the two conditions is unique:

$$
S=\{0,3,6,9, \ldots\}
$$

Rules of Inference

The third way is to define the set with inference rules. An inference rule is of the form:

$$
\frac{A}{B}
$$

- A: hypothesis (antecedent)
- \boldsymbol{B} : conclusion (consequent)
- "if \boldsymbol{A} is true then \boldsymbol{B} is also true".
- $\overline{\boldsymbol{B}}$: axiom (inference rule without hypothesis)

The hypothesis may contain multiple statements:

$$
\frac{A \quad B}{C}
$$

"If both \boldsymbol{A} and \boldsymbol{B} are true then so is \boldsymbol{C} ".

Rules of Inferences

The set \boldsymbol{S} is defined as inference rules as follows:

Definition (S)

$$
\overline{0 \in S} \quad \frac{n \in S}{(n+3) \in S}
$$

Interpret the rules as follows:
"A natural number \boldsymbol{n} is in \boldsymbol{S} iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"

For example, $\mathbf{3} \in \boldsymbol{S}$ because we can find a "proof/derivation tree":

$$
\begin{aligned}
& \overline{\mathbf{0 \in S}} \text { the axiom } \\
& \overline{\mathbf{3} \in S} \text { the second rule }
\end{aligned}
$$

but $1,2,4, \cdots \notin S$ because we cannot find proofs. Note that this interpretation enforces that S is the smallest set closed under the inference rules.

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x}{x+y}
$$

(2) What set is defined by the following inductive rules?

$$
\overline{()} \quad \frac{x}{(x)} \quad \frac{x y}{x y}
$$

(3) Define the following set as rules of inference:

$$
S=\{a, b, a a, a b, b a, b b, a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b, \ldots\}
$$

(9) Define the following set as rules of inference:

$$
S=\left\{x^{n} y^{n+1} \mid n \in \mathbb{N}\right\}
$$

Summary

In inductive definitions, a set is defined in terms of itself. Three styles:

- Top-down
- Bottom-up
- Rules of inference

In PL, we mainly use the rules-of-inference method.

