
Homework 5

COSE212, Fall 2019

Hakjoo Oh

Due: 12/10, 23:59

Problem 1 Consider the language:

type exp =

| CONST of int

| VAR of var

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| READ

| ISZERO of exp

| IF of exp * exp * exp

| LET of var * exp * exp

| LETREC of var * var * exp * exp

| PROC of var * exp

| CALL of exp * exp

and var = string

Types for the language are defined as follows:

type typ = TyInt | TyBool | TyFun of typ * typ | TyVar of tyvar

and tyvar = string

Implement the following type-inference function:

typeof : exp -> typ

which takes a program and returns its type if the program is well-typed. When
the program is ill-typed, typeof should raise an exception TypeError.

Examples:

• The program

PROC ("f",

PROC ("x", SUB (CALL (VAR "f", CONST 3),

CALL (VAR "f", VAR "x"))))

1

has type TyFun (TyFun (TyInt, TyInt), TyFun (TyInt, TyInt)).

• The program

PROC ("f", CALL (VAR "f", CONST 11))

has type TyFun (TyFun (TyInt, TyVar "t"), TyVar "t"), where t can
be any type variable.

• The program

LET ("x", CONST 1,

IF (VAR "x", SUB (VAR "x", CONST 1), CONST 0))

is ill-typed, so typeof should raise an exception TypeError.

As discussed in class, typeof is defined with two functions: one for gen-
erating type equations and the other for solving the equations. Complete the
implementation of these two functions:

gen equations : TEnv.t -> exp -> typ -> typ eqn

solve : typ eqn -> Subst.t

Modules for type environments (TEnv) and substitutions (Subst), as well as
the operations of applying substitutions to types (Subst.apply) and extending
substitutions (Subst.extend), are provided.

Problem 2 Consider the language:

type exp =

| CONST of int

| VAR of var

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| READ

| ISZERO of exp

| IF of exp * exp * exp

| LET of var * exp * exp

| LETREC of var * var * exp * exp

| PROC of var * exp

| CALL of exp * exp

and var = string

Define the function
expand : exp -> exp

that transforms an expression into a semantically-equivalent expression where
every let-bound variable in the original expression gets replaced by its definition.
Examples and caveat:

2

• Evaluating

expand (LET ("x", CONST 1, VAR "x"))

produces CONST 1.

• Evaluating

expand (

LET ("f", PROC ("x", VAR "x"),

IF (CALL (VAR "f", ISZERO (CONST 0)),

CALL (VAR "f", CONST 11),

CALL (VAR "f", CONST 22))))

produces

IF (CALL (PROC ("x", VAR "x"), ISZERO (CONST 0)),

CALL (PROC ("x", VAR "x"), CONST 11),

CALL (PROC ("x", VAR "x"), CONST 22))

• Unused definitions should not go away. For example, evaluating

expand (LET ("x", ADD (CONST 1, ISZERO (CONST 0)), CONST 2))

should return LET ("x", ADD (CONST 1, ISZERO (CONST 0)), CONST 2),
not CONST 2.

As discussed in class, the function expand can be used for implementing the let-
polymorphic type system. The type checker typeof : exp -> typ in Problem
1 does not support polymorphism and would not accept the program:

typeof(

LET ("f", PROC ("x", VAR "x"),

IF (CALL (VAR "f", ISZERO (CONST 0)),

CALL (VAR "f", CONST 11),

CALL (VAR "f", CONST 22))));;

= Equations =

t2 = (t6 -> t7)

t7 = t6

(t5 -> bool) = t2

t5 = bool

int = int

(t4 -> t1) = t2

t4 = int

(t3 -> t1) = t2

t3 = int

The program does not have type. Rejected.

3

With expand, however, the same type checking algorithm will succeed:

typeof(

expand(

LET ("f", PROC ("x", VAR "x"),

IF (CALL (VAR "f", ISZERO (CONST 0)),

CALL (VAR "f", CONST 11),

CALL (VAR "f", CONST 22)))));;

= Equations =

(t8 -> bool) = (t9 -> t10)

t10 = t9

t8 = bool

int = int

(t5 -> t1) = (t6 -> t7)

t7 = t6

t5 = int

(t2 -> t1) = (t3 -> t4)

t4 = t3

t2 = int

= Substitution =

t3 |-> int

t4 |-> int

t2 |-> int

t6 |-> int

t7 |-> int

t1 |-> int

t5 |-> int

t9 |-> bool

t10 |-> bool

t8 |-> bool

Type of the given program: int

4

