Homework 2
COSE212, Fall 2019

Hakjoo Oh
Due: 10/14, 23:59

Academic Integrity / Assignment Policy

e All assignments must be your own work.

e Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

— Discussion must be limited to general discussion and must not involve
details of how to write code.

— You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

— Do not allow other students to copy your code.

— Do not post your code on the public web.

e Violating above rules gets you 0 points for the entire HW score.

Problem 1 Write a function
smallest_divisor: int -> int

that finds the smallest integral divisor (greater than 1) of a given number n.

For example,
smallest_divisor 15 = 3

smallest_divisor 121 =11
smallest_divisor 141 = 3
smallest_divisor 199 = 199

Ensure that your algorithm runs in ©(y/n) steps.
Problem 2 Write a higher-order function
sigma : (int -> int) -> int -> int -> int

such that sigma f a b computes

b
_Zf(z‘»



For instance,
sigma (fun x -> x) 1 10

evaulates to 55 and
sigma (fun x -> x*x) 17

evaluates to 140.
Problem 3 Write a higher-order function
forall : (’a -> bool) -> ’a list -> bool
which decides if all elements of a list satisfy a predicate. For example,
forall (fun x -> x mod 2 = 0) [1;2;3]
evaluates to false while
forall (fun x -> x > 5) [7;8;9]
is true.
Problem 4 Write a function
app: ’a list ->’a list -> ’a list

which appends the first list to the second list while removing duplicated ele-
ments. For instance, given two lists [4;5;6;7] and [1;2;3;4], the function
should output [1;2;3;4;5;6;7]:

app [4;5;6;7] [1;2;3;4] = [1;2;3;4;5;6;7].
Problem 5 Write a function
uniq: ’a list -> ’a list

which removes duplicated elements from a given list so that the list contains
unique elements. For instance,

uniq [5;6;5;4] = [5;6;4]
Problem 6 Write a function reduce of the type:
reduce : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c
Given a function f of type ’a => ’b => ’c -> ’c, the expression
reduce f [x1;x2;...;xn] [yl;y2;...;yn] cl
evaluates to £ xn yn (... (£ x2 y2 (£ x1 y1 c1))...). For example,
reduce (fun x y z -> x * y + z) [1;2;3] [0;1;2] O

evaluates to 8.



Problem 7 A directed graph can be represented as follows:

(vertex * vertex) list
int

type graph
and vertex

For example, the following graph

1—2—3—4

)
is represented by [(1,2);(2,3);(3,4);(4,2);(2,5)]. Write a function
reach : graph * vertex -> vertex list

that returns the set of vertices that are reachable from the vertex given as the
second argument. For example,

reach ([(1,2);(2,3);(3,4);(4,2);(2,5)]1, 1) = [1;2;3;4;5]
reach ([(1,2);(2,3);(3,4);(4,2);(2,5)], 2) = [2;3;4;5]
reach ([(1,2);(2,3);(3,4);(4,2);(2,5)], 3) = [2;3;4;5]
reach ([(1,2);(2,3);(3,4);(4,2);(2,5)]1, 4) = [2;3;4;5]

reach ([(1,2);(2,3);(3,4);(4,2);(2,5)], 5) =

|
—
(62
it}

Problem 8 Write a function
diff : aexp * string -> aexp

that differentiates the given algebraic expression with respect to the variable
given as the second argument. The algebraic expression aexp is defined as fol-
lows:
type aexp =

| Const of int

| Var of string

| Power of string * int

| Times of aexp list

| Sum of aexp list

For example, 22 + 2z + 1 is represented by
Sum [Power ("x", 2); Times [Const 2; Var "x"]; Const 1]
and differentiating it (w.r.t. “x”) gives 2z + 2, which can be represented by
Sum [Times [Const 2; Var "x"]; Const 2]

Note that the representation of 2z + 2 in aexp is not unique. For instance, the
following also represents 2x + 2:



Sum
[Times [Const 2; Power ("x", 1)]1;
Sum
[Times [Const 0; Var "x"];
Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Const 0]]11];
Const 0]

Problem 9 A binary mobile consists of two branches, a left branch and a right
branch. Each branch is a rod of a certain length, from which hangs either a
weight or another binary mobile. In OCaml datatype, a binary mobile can be
defined as follows:

type mobile = branch * branch (* left and rigth branches *)
and branch = SimpleBranch of length * weight

| CompoundBranch of length * mobile

and length = int
and weight

int

A branch is either a simple branch, which is constructed from a length together
with a weight, or a compound branch, which is constructed from a length to-
gether with another mobile. For instance, the mobile

is represented by the following:

(CompoundBranch (3,
(CompoundBranch (2, (SimpleBranch (1, 1), SimpleBranch (1, 1))),
SimpleBranch (1, 4))),

SimpleBranch (6, 3))

Define the function
balanced : mobile -> bool

that tests whether a binary mobile is balanced. A mobile is said to be balanced if
the torque applied by its top-left branch is equal to that applied by its top-right
branch (that is, if the length of the left rod multiplied by the weight hanging
from that rod is equal to the corresponding product for the right side) and if
each of the submobiles hanging off its branches is balanced. For example, the
example mobile above is balanced.

Problem 10 Consider the following expressions:



type exp = X
| INT of int
| ADD of exp * exp
| SUB of exp * exp
| MUL of exp * exp
| DIV of exp * exp
|

SIGMA of exp * exp * exp

Implement a calculator for the expressions:
calculator : exp -> int

For instance,
10

Z(x*x—l)

z=1

is represented by
SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))

and evaluating it should give 375.



