
Homework 1

COSE212, Fall 2019

Hakjoo Oh

Due: 9/30, 24:00

Academic Integrity / Assignment Policy

• All assignments must be your own work.

• Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

– Discussion must be limited to general discussion and must not involve
details of how to write code.

– You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

– Do not allow other students to copy your code.

– Do not post your code on the public web.

• Violating above rules gets you 0 points for the entire HW score.

Problem 1 Consider the following triangle (it is called Pascal’s triangle):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
· · ·

where the numbers at the edge of the triangle are all 1, and each number inside
the triangle is the sum of the two numbers above it. Write a function

pascal: int * int -> int

that computes elements of Pascal’s triangle. For example, pascal should behave

1

as follows:
pascal (0,0) = 1

pascal (1,0) = 1

pascal (1,1) = 1

pascal (2,1) = 2

pascal (4,2) = 6

Problem 2 Write a function

prime: int -> bool

that checks whether a number is prime (n is prime if and only if n is its own
smallest divisor except for 1). For example,

prime 2 = true

prime 3 = true

prime 4 = false

prime 17 = true

Problem 3 Write a function

dfact : int -> int

that computes double-factorials. Given a non-negative integer n, its double-
factorial, denoted n!!, is the product of all the integers of the same parity as n
from 1 to n. That is, when n is even

n!! =

n/2∏
k=1

(2k) = n · (n− 2) · (n− 4) · · · 4 · 2

and when n is odd,

n!! =

(n+1)/2∏
k=1

(2k − 1) = n · (n− 2) · (n− 4) · · · 3 · 1

For example, 7!! = 1 × 3 × 5 × 7 = 105 and 6!! = 2 ∗ 4 ∗ 6 = 48.

Problem 4 Consider the task of computing the exponential of a given number.
We would like to write a function that takes as arguments a base b and a positive
integer exponent n to compute bn. Read the remaining problem description
carefully and devise an algorithm that has time complexity of Θ(log n).

One simple way to implement the function is via the following recursive
definition:

b0 = 1
bn = b · bn−1

which translates into the OCaml code:

2

let rec expt b n =

if n = 0 then 1

else b * (expt b (n-1))

However, this algorithm is slow; it takes Θ(n) steps.
We can improve the algorithm by using successive squaring. For instance,

rather than computing b8 as

b · (b · (b · (b · (b · (b · (b · b))))))

we can compute it using three multiplications as follows:

b2 = b · b
b4 = b2 · b2
b8 = b4 · b4

This method works only for exponents that are powers of 2. We can generalize
the idea via the following recursive rules:

bn = (bn/2)2 if n is even
bn = b · bn−1 if n is odd

Use the rules to write a function fastexpt that computes exponentials in
Θ(log n) steps:

fastexpt: int -> int -> int

Problem 5 Define the function iter:

iter : int * (int -> int) -> (int -> int)

such that
iter(n, f) = f ◦ · · · ◦ f︸ ︷︷ ︸

n

.

When n = 0, iter(n, f) is defined to be the identity function. When n > 0,
iter(n, f) is the function that applies f repeatedly n times. For instance,

iter(n, fun x -> 2+x) 0

evaluates to 2 × n.

Problem 6 Natural numbers are defined inductively:

0

n

n + 1

In OCaml, the inductive definition can be defined by the following a data type:

type nat = ZERO | SUCC of nat

3

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two
functions that add and multiply natural numbers:

natadd : nat -> nat -> nat

natmul : nat -> nat -> nat

For example,

let two = SUCC (SUCC ZERO);;

val two : nat = SUCC (SUCC ZERO)

let three = SUCC (SUCC (SUCC ZERO));;

val three : nat = SUCC (SUCC (SUCC ZERO))

natmul two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))

natadd two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))

Problem 7 Binary trees can be defined as follows:

type btree =

Empty

|Node of int * btree * btree

For example, the following t1 and t2

let t1 = Node (1, Empty, Empty)

let t2 = Node (1, Node (2, Empty, Empty), Node (3, Empty, Empty))

are binary trees. Write the function

mem: int -> btree -> bool

that checks whether a given integer is in the tree or not. For example,

mem 1 t1

evaluates to true, and
mem 4 t2

evaluates to false.

Problem 8 Consider the following propositional formula:

type formula =

| True

| False

| Not of formula

| AndAlso of formula * formula

| OrElse of formula * formula

| Imply of formula * formula

| Equal of exp * exp

and exp =

| Num of int

| Plus of exp * exp

| Minus of exp * exp

4

Write the function
eval : formula -> bool

that computes the truth value of a given formula. For example,

eval (Imply (Imply (True,False), True))

evaluates to true, and

eval (Equal (Num 1, Plus (Num 1, Num 2)))

evaluates to false.

Problem 9 Write two functions

max: int list -> int

min: int list -> int

that find maximum and minimum elements of a given list, respectively. For
example max [1;3;5;2] should evaluate to 5 and min [1;3;2] should be 1.

Problem 10 Write a higher-order function

drop : (’a -> bool) -> ’a list -> ’a list

which removes elements of a list while they satisfy a predicate. For example,

drop (fun x -> x mod 2 = 1) [1;3;5;6;7]

evaluates to [6;7] and

drop (fun x-> x > 5) [1;3;7]

evaluates to [1;3;7].

5

