Homework 1
 COSE212, Fall 2019

Hakjoo Oh
Due: 9/30, 24:00

Academic Integrity / Assignment Policy

- All assignments must be your own work.
- Discussion with fellow students is encouraged including how to approach the problem. However, your code must be your own.
- Discussion must be limited to general discussion and must not involve details of how to write code.
- You must write your code by yourself and must not look at someone else's code (including ones on the web).
- Do not allow other students to copy your code.
- Do not post your code on the public web.
- Violating above rules gets you 0 points for the entire HW score.

Problem 1 Consider the following triangle (it is called Pascal's triangle):

\[

\]

where the numbers at the edge of the triangle are all 1 , and each number inside the triangle is the sum of the two numbers above it. Write a function

```
pascal: int * int -> int
```

that computes elements of Pascal's triangle. For example, pascal should behave
as follows:

```
pascal (0,0) = 1
pascal (1,0) = 1
pascal (1,1) = 1
pascal (2,1) = 2
pascal (4,2) = 6
```

Problem 2 Write a function
prime: int -> bool
that checks whether a number is prime (n is prime if and only if n is its own smallest divisor except for 1). For example,

```
prime 2 = true
prime 3 = true
prime 4 = false
prime 17 = true
```

Problem 3 Write a function

```
dfact : int -> int
```

that computes double-factorials. Given a non-negative integer n, its doublefactorial, denoted $n!!$, is the product of all the integers of the same parity as n from 1 to n. That is, when n is even

$$
n!!=\prod_{k=1}^{n / 2}(2 k)=n \cdot(n-2) \cdot(n-4) \cdots 4 \cdot 2
$$

and when n is odd,

$$
n!!=\prod_{k=1}^{(n+1) / 2}(2 k-1)=n \cdot(n-2) \cdot(n-4) \cdots 3 \cdot 1
$$

For example, $7!!=1 \times 3 \times 5 \times 7=105$ and $6!!=2 * 4 * 6=48$.
Problem 4 Consider the task of computing the exponential of a given number. We would like to write a function that takes as arguments a base b and a positive integer exponent n to compute b^{n}. Read the remaining problem description carefully and devise an algorithm that has time complexity of $\Theta(\log n)$.

One simple way to implement the function is via the following recursive definition:

$$
\begin{aligned}
b^{0} & =1 \\
b^{n} & =b \cdot b^{n-1}
\end{aligned}
$$

which translates into the OCaml code:

```
let rec expt b n =
    if n = 0 then 1
    else b * (expt b (n-1))
```

However, this algorithm is slow; it takes $\Theta(n)$ steps.
We can improve the algorithm by using successive squaring. For instance, rather than computing b^{8} as

$$
b \cdot(b \cdot(b \cdot(b \cdot(b \cdot(b \cdot(b \cdot b))))))
$$

we can compute it using three multiplications as follows:

$$
\begin{aligned}
b^{2} & =b \cdot b \\
b^{4} & =b^{2} \cdot b^{2} \\
b^{8} & =b^{4} \cdot b^{4}
\end{aligned}
$$

This method works only for exponents that are powers of 2 . We can generalize the idea via the following recursive rules:

$$
\begin{array}{ll}
b^{n}=\left(b^{n / 2}\right)^{2} & \text { if } n \text { is even } \\
b^{n}=b \cdot b^{n-1} & \text { if } n \text { is odd }
\end{array}
$$

Use the rules to write a function fastexpt that computes exponentials in $\Theta(\log n)$ steps:

```
fastexpt: int -> int -> int
```

Problem 5 Define the function iter:
iter : int * (int -> int) -> (int -> int)
such that

$$
\operatorname{iter}(n, f)=\underbrace{f \circ \cdots \circ f}_{n} \text {. }
$$

When $n=0$, iter (n, f) is defined to be the identity function. When $n>0$, iter (n, f) is the function that applies f repeatedly n times. For instance,

$$
\text { iter }(n, \text { fun } \mathrm{x}->2+\mathrm{x}) 0
$$

evaluates to $2 \times n$.
Problem 6 Natural numbers are defined inductively:

$$
\overline{0} \quad \frac{n}{n+1}
$$

In OCaml, the inductive definition can be defined by the following a data type:
type nat = ZERO | SUCC of nat

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two functions that add and multiply natural numbers:

```
natadd : nat -> nat -> nat
natmul : nat -> nat -> nat
```

For example,

```
# let two = SUCC (SUCC ZERO);;
val two : nat = SUCC (SUCC ZERO)
# let three = SUCC (SUCC (SUCC ZERO));;
val three : nat = SUCC (SUCC (SUCC ZERO))
# natmul two three;;
- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))
# natadd two three;;
- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))
```

Problem 7 Binary trees can be defined as follows:

```
type btree =
    Empty
    |Node of int * btree * btree
```

For example, the following t1 and t2
let $\mathrm{t} 1=$ Node (1, Empty, Empty)
let t2 = Node (1, Node (2, Empty, Empty), Node (3, Empty, Empty))
are binary trees. Write the function

```
mem: int -> btree -> bool
```

that checks whether a given integer is in the tree or not. For example,

```
mem 1 t1
```

evaluates to true, and

```
mem 4 t2
```

evaluates to false.
Problem 8 Consider the following propositional formula:

```
type formula =
    | True
    | False
    | Not of formula
    | AndAlso of formula * formula
    | OrElse of formula * formula
    | Imply of formula * formula
    | Equal of exp * exp
and exp =
    | Num of int
    | Plus of exp * exp
    | Minus of exp * exp
```

Write the function

```
eval : formula -> bool
```

that computes the truth value of a given formula. For example,

```
eval (Imply (Imply (True,False), True))
```

evaluates to true, and

```
eval (Equal (Num 1, Plus (Num 1, Num 2)))
```

evaluates to false.
Problem 9 Write two functions

```
max: int list -> int
min: int list -> int
```

that find maximum and minimum elements of a given list, respectively. For example max $[1 ; 3 ; 5 ; 2]$ should evaluate to 5 and $\min [1 ; 3 ; 2]$ should be 1 .

Problem 10 Write a higher-order function

```
drop : ('a -> bool) -> 'a list -> 'a list
```

which removes elements of a list while they satisfy a predicate. For example,

```
drop (fun x -> x mod 2 = 1) [1;3;5;6;7]
```

evaluates to $[6 ; 7]$ and

```
drop (fun x-> x > 5) [1;3;7]
```

evaluates to $[1 ; 3 ; 7]$.

