
Final Exam
COSE212 Programming Languages, Fall 2017

Name:
Student Number:

Write down answers only. Make sure that the answers are readable.

Problem 1 (15pts)

1. (5pts) Let S be the set of all propositional formulas defined over
boolean constants (true and false), negation (¬), conjunction
(∧), disjunction (∨), and implication (=⇒). Provide a bottom-
up, inductive definition of S.

2. (5pts) Define S by rules of inference.

3. (5pts) Let P be the set of all palindromes over the binary
alphabet Σ = {0, 1}. A string x ∈ Σ is a palindrome if it
reads the same forward and backward, e.g., ε (empty string), 0,
1, 00, 11, 010, 101, 0110, Define P by rules of inference.

Problem 2 (15pts)

1. (5pts) Write a higher-order function

all : (’a -> bool) -> ’a list -> bool

which decides if all elements of a list satisfy a predicate. For ex-
ample, all (fun x -> x mod 2 = 0) [1;2;3] evaluates
to false while all (fun x -> x > 5) [7;8;9] is true.

let rec all p l =
match l with

| [] -> (1)

| hd::tl -> (2)

Complete (1) and (2).

2. (5pts) Write a higher-order function

dropWhile : (’a -> bool) -> ’a list -> ’a list

which removes elements of a list while they satisfy a predicate.
E.g., dropWhile (fun x -> x mod 2 = 0) [2;4;7;9] is
[7;9] and dropWhile (fun x-> x>5) [1;3;7] is [1;3;7].

let rec dropWhile p l =
match l with

| [] -> (1)

| hd::tl -> (2)

Complete (1) and (2).

3. (5pts) Let us define the type of natural numbers as follows:

type nat = Zero | Succ of nat

Define a function nat2int : nat -> int, which converts
natural numbers to integers. For example, nat2int (Succ
(Succ (Succ Zero))) evaluates to 3.

let rec nat2int n =
match n with

| Zero -> (1)

| Succ m -> (2)

Complete (1) and (2).

Problem 3 (10pts) JavaScript programs often use closures: e.g.,

function create(init) {
return function (step) {

init += step;
return init;

};
}
var inc = create(5);
var a = inc(1);
var b = inc(2);

What are the values of a and b at the end of the program? Hint:
the JavaScript code can be translated to our language with implicit
references as follows:

let create =
proc (init)

(proc (step) (set init = init + step; init)) in
let inc = (create 5) in
let a = (inc 1) in
let b = (inc 2) in
(* What are the values of a and b here? *)

1 2018/12/17

Problem 4 (10pts) What is the value of the program?

let a = 1 in
let b = 2 in
let p = proc (a) (a+b) in

let f = proc (b) (p (b+1)) in
let a = 5 in

(f 2)

1. (5pts) With static scoping:

2. (5pts) With dynamic scoping:

Problem 5 (10pts) Is lazy evaluation always faster than eager
evaluation? If yes, explain why. If not, illustrate a counter-example.

Problem 6 (10pts) Consider the programs:

(a)
let x = read in

letrec double(x) =
if iszero x then 0 else (double (x-1)) + 2 in

double

(b)
letrec fact(n) =

if iszero n then 1 else ((fact (n-1)) * n) in
(fact read)

(c)
proc (maker)

proc (x)
if iszero (x) then 0
else (((maker maker) (x-1)) + 4)

(d)
let f = proc (x) (x-11) in

(f (f 77))

(e)
let f = proc (x) x in

(f f)

1. (5pts) Choose all programs that are accepted by the simple
(monomorphic) type system.

2. (5pts) Choose all programs that are accepted by the let-polymorphic
type system.

Problem 7 (10pts) Let E be the simple expression language:

E → n | true | false | E1 + E2 | E1 < E2 | E1&&E2

where n denotes a natural number, true true, false false, E1 +E2

addition,E1 < E2 is true iff the number denoted byE1 is less than
E2, E1&&E2 is true iff both E1 and E2 are true.

1. (5pts) The meaning of an expression is the (integer or boolean)
value denoted by the expression. Define the evaluation rules.

2. (5pts) Design a sound and complete type system for the lan-
guage.

Problem 8 (20pts) O/X questions. 1 point each. Leave a blank
when you are uncertain; each correct answer gets you 2 points but
you lose 2 points for each wrong answer.

1. The set of even numbers, {0, 2, 4, . . .}, can be defined as the
smallest set S ⊆ N such that
• 0 ∈ S, and
• F (S) ⊆ S where F (S) = {n+ 2 | n ∈ S}.

2. The set S defined above is unique.

3. In C, type-checking is done at compile-time.

4. C supports dynamic scoping.

5. C supports call-by-reference.

6. A type system that always accepts input programs is complete.

7. In a language with explicit references, locations are first-class
objects.

8. Any Turing-complete language can be translated into lambda
calculus.

9. Types in programming languages are a static property.

10. Recall the Church encoding of booleans: true and false are rep-
resented by λt.λf.t and λt.λf.f , respectively. We can define
the logical-and (i.e., &&) operator as follows:

λb.λc.b c false

2 2018/12/17

