COSE212: Programming Languages

Lecture 6 — Design and Implementation of PLs
(2) Procedures

Hakjoo Oh
2018 Fall

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 1/26

Review: The Let Language

Syntax:
P
E

E+FE

E—FE

iszero B

if F then F else FE
letx =F in FE

— FE
— n
| =
|
|
|
|
|
| read

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 2 /26

Review: The Let Language

Semantic domain:
Val = 7 + Bool
Env = Var — Val

Semantics rules:

pFn=n ptax= p(x)

pHE; = ng pH E; = ng pHE; = n;y pH E; = no
pl—El—l—E2=>n1+n2 p"El—E2:>TL]_—’I’L2

p-E=0 pHFE=mn £0
pHread = n p F iszero E = true p F iszero E = false "

p+ Ei = true pt E; = v p+ Eiy = false pHEs=wv
pt if Eq then E; else E3 = v pt if Eq then E5 else E3 = v

pHE; = v [t — vi]pF Ex = v
pkletx =FE in E; = v

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 3 /26

Proc = Let 4+ Procedures
P
E

E+ FE

E—F

iszero B

if F then F else E
letx =F in FE
read

procx E

— FE
— n
| =«
|
|
|
|
|
|
|
| EE

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 4/26

Example

@ let f = proc (x) (x-11)
in (£ (£ 77))

e ((proc (f) (f (£ 77))) (proc (x) (x-11)))

Hakjoo Oh COSE212 2018 Fall, Lecture 6

Free/Bound Variables of Procedures

@ An occurrence of the variable x is bound when it occurs without
definitions in the body of a procedure whose formal parameter is x.

@ Otherwise, the variable is free.
@ Examples:

» proc (y) (x+y)

» proc (x) (let y=1inx +y + 2)
» proc (x) (proc (y) (x+y))

» let x = 1 in proc (y) (x+y)

» let x = 1 in proc (y) (x+y+z)

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 6 /26

Static vs. Dynamic Scoping
What is the result of the program?

let x =1
in let f = proc (y) (x+y)
in let x = 2
in let g = proc (y) (x+y)
in (£ 1) + (g 1

Two ways to determine free variables of procedures:

e In static scoping (lexical scoping), the procedure body is evaluated in
the environment where the procedure is defined (i.e.
procedure-creation environment).

@ In dynamic scoping, the procedure body is evaluated in the
environment where the procedure is called (i.e. calling environment)

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 7 /26

Exercises

What is the result of the program?
@ In static scoping:

@ In dynamic scoping:

Q let a =3
in let p = proc (z) a
in let £ = proc (x) (p 0)
in let a =5
in (f 2)
Q let a =3
in let p = proc (z) a
in let f = proc (a) (p 0)
in let a =5
in (£ 2)

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018

8/ 26

Why Static Scoping?
Most modern languages use static scoping. Why?

@ Reasoning about programs is much simpler in static scoping.

@ In static scoping, renaming bound variables by their lexical definitions
does not change the semantics, which is unsafe in dynamic scoping.
let x =1
in let f = proc (y) (x+y)

in let x = 2
in let g = proc (y) (x+y)
in (£ 1) + (g 1)
@ In static scoping, names are resolved at compile-time.

@ In dynamic scoping, names are resolved only at runtime.

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 9 /26

Semantics of Procedures: Static Scoping

@ Domain:

Val = 7Z + Bool + Procedure
Procedure = Var X E X Env
Env = Var — Val

The procedure value is called closures. The procedure is closed in its
creation environment.

@ Semantics rules:

ptFprocx E = (z, E, p)

pt E; = (z,E,p) pEE; = v [t — v]p'H E =
pt E1 Ey = v

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 10 / 26

Examples

[F (proc (x) (x)) 1=1

Hakjoo Oh COSE212 2018 Fall, Lecture 6

Examples

let x =1
in let £ = proc (y) (x+y)
in let x = 2
in (f 3)

[+ =4

Hakjoo Oh COSE212 2018 Fall, Lecture 6

Semantics of Procedures: Dynamic Scoping

@ Domain:

Val = 7Z 4+ Bool + Procedure
Procedure = Var X E
Env = Var — Val

@ Semantics rules:

ptrprocx E = (z, E)

pt E + (x, FE) ptF Es = v [t — v]pH E =
pt E1 Ey = v

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 13 /26

Examples

let x =1
in let £ = proc (y) (x+y)
in let x = 2
in (f 3)

[+ =5

Hakjoo Oh COSE212 2018 Fall, Lecture 6

cf) Multiple Argument Procedures

@ We can get the effect of multiple argument procedures by using
procedures that return other procedures.

@ ex) a function that takes two arguments and return their sum:

let £ = proc (x) proc (y) (x+y)
in ((f 3) 4)

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 15 / 26

Adding Recursive Procedures
The current language does not support recursive procedures, e.g.,

let £ = proc (x) (f x)
in (f 1)

for which evaluation gets stuck:

=1k f=? [z—1lFz=1
[f= (e, fae,DIFF=(,f=][) [1] fa =7
f=(fz,DIFG1) =7

Two solutions:
@ go back to dynamic scoping :-(

e modify the language syntax and semantics for procedure :-)

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 16 / 26

Recursion is Not Special in Dynamic Scoping

With dynamic scoping, recursive procedures require no special mechanism.
Running the program

let f = proc (x) (f x)
in (f 1)

via dynamic scoping semantics

p+ Ey = (xz,E) pt Ey = v [t — v]p- E =
pk E1 Es = v

proceeds well:

f—(z, fx),z— 1] FHf x=>
[f—=(z, f 2),x— 1] Hf x =
[f—= (@, fo)Hf 1=
[[Flet £ = proc (x) (f x) in (f 1) =

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 17 / 26

Adding Recursive Procedures
P
E

E+ FE

E—FE

iszero E

if F then F else E
letx = F in FE

read

letrec f(z) = E in E
proc x E

— FE
— n
| =«
|
|
|
|
|
|
|
|
| EE

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 18 / 26

Example

letrec double(x) =
if zero?(x) then 0 else ((double (x-1)) + 2)
in (double 1)

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 19 / 26

Semantics of Recursive Procedures

@ Domain:

Val

Procedure
RecProcedure
Env

@ Semantics rules:

7, + Bool + Procedure + RecProcedure

Var x E X Env
Var x Var x E X Env
Var — Val

[f = (f,z,E1,p)lpt Ex = v

pt letrec f(x) = E1 in E3 = v

prEi= (fiz,E,p') p-E;=v
[x— v, f—= (f,z, E,p')]p' - E =

ptH Ey E; =0

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018

20/ 26

Example

z—1L,f= (fz,fz,DFfz=>
[f= iz fe,DIFF=(fz f) [x—=1,f—= (fiz, fax, DI+ fz=
f = (Hrzfz,DFF1=
[l + letrec f(z) = fxin f 1 =

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 21/ 26

Mutually Recursive Procedures

P
E

iszero E

if E then F else E

letz=F in E

read

letrec f(z) = F in E

letrec f(x1) = E7 and g(@2) = E2 in E
procx E

— FE
— n
| =«
|
|
|
|
|
|
|
|
|
| EE

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 22 /26

Example

letrec
even(x) = if iszero(x) then 1 else odd(x-1)
odd(x) = if iszero(x) then O else even(x-1)
in (odd 13)

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 23 /26

Semantics of Recursive Procedures
To support mutually recursive procedures, we need to extend the domain
and sematnics:

@ Domain:

Val = ---+4+ MRecProcedure
MRecProcedure = 7

@ Semantics rules:
o

p - letrec f(x) = E1 and g(y) = E2 in E3 =7

?
pF Ey Es =7

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 24 / 26

Summary: The Proc Language

A programming language with expressions and procedures:

P
E

— FE
— n
| =
|
|
| iszero E
| if E then E else E
| letxz=FEin E
| read
| 1letrec f(z) =E in E
| procxz E
| EE

Hakjoo Oh COSE212 2018 Fall, Lecture 6 October 8, 2018 25/ 26

Summary

Semantics

ptH E1 = ny

pt Ez = na

pFn=mn ptFx= p(x)

p-E=0 pHFE=mn

0
p F iszero E = true p - iszero E = false n#

pt+ E1 = true pt Ez = v

p+ E1 = false

p- E1+ E2 = ni+n2

pbread = n

pt E3=v

pt if E; then E3 else E3 = v

pkE1 = v [— vi]pt+ E2 = v [f = (fsz,E1,p)lpt+ E2 = v

p - if E; then E3 else E3 = v

ptletx = FEq1 in E3 = v

p F proc ¢ E = (, E, p)

p b letrec f(x) = Ey in E2 = v

pt E1 = (z,E,p’) pHE2=wv [— v]p' - E = v/

p+ E1 Ez = v/

pEEy :>(f7waE,p,) pEEz=v

[CU'—)’U,fH(f,:l:,E,p')]p'FE:)’U'

pt E1 Ez = v

Hakjoo Oh COSE212 2018 Fall, Lecture 6

October 8, 2018

26 / 26

