COSE212: Programming Languages

Lecture 14 - Automatic Type Inference (2)

Hakjoo Oh
2018 Fall

Goal

- So far we have informally discussed how to derive type equations.
- In this lecture, we define the procedure precisely.

Language

Type Equations

- Type equations are conjunctions of "type equalities" : e.g.,

$$
\begin{aligned}
\boldsymbol{t}_{\mathbf{0}} & =\boldsymbol{t}_{\boldsymbol{f}} \rightarrow \boldsymbol{t}_{\mathbf{1}} \\
\boldsymbol{t}_{\mathbf{1}} & =\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{4}} \\
\boldsymbol{t}_{\mathbf{3}} & =\mathrm{int} \\
\boldsymbol{t}_{\mathbf{4}} & =\mathrm{int} \\
\boldsymbol{t}_{\mathbf{2}} & =\mathrm{int} \\
\boldsymbol{t}_{\boldsymbol{f}} & =\mathrm{int} \rightarrow \boldsymbol{t}_{\mathbf{3}} \\
\boldsymbol{t}_{\boldsymbol{f}} & =\boldsymbol{t}_{\boldsymbol{x}} \rightarrow \boldsymbol{t}_{\mathbf{4}}
\end{aligned}
$$

- Type equations (TyEqn) are defined inductively:

$$
\begin{array}{lll}
T y E q n & \rightarrow & \emptyset \\
& \mid \quad T \doteq T \wedge T y E q n
\end{array}
$$

Deriving Type Equations

- Algorithm for generating equations:

$$
\mathcal{V}:(\operatorname{Var} \rightarrow T) \times E \times T \rightarrow T y E q n
$$

- $\mathcal{V}(\Gamma, e, t)$ generates the condition for e to have type t in Γ :

$$
\Gamma \vdash e: t \text { iff } \mathcal{V}(\Gamma, e, t) \text { is satisfied. }
$$

- Examples:
- $\mathcal{V}([x \mapsto$ int $], \mathrm{x}+1, \boldsymbol{\alpha})=$
- $\mathcal{V}(\emptyset, \operatorname{proc}(x)($ if x then 1 else 2$), \alpha \rightarrow \beta)=$
- To derive type equations for closed expression \boldsymbol{E}, we call $\mathcal{V}(\emptyset, E, \alpha)$, where $\boldsymbol{\alpha}$ is a fresh type variable.

Deriving Type Equations

$$
\begin{aligned}
\mathcal{V}(\Gamma, n, t) & = \\
\mathcal{V}(\Gamma, x, t) & = \\
\mathcal{V}\left(\Gamma, e_{1}+e_{2}, t\right) & = \\
\mathcal{V}(\Gamma, \text { iszero } e, t) & = \\
\mathcal{V}\left(\Gamma, \text { if } e_{1} e_{2} e_{3}, t\right) & = \\
\mathcal{V}\left(\Gamma, \text { let } x=e_{1} \text { in } e_{2}, t\right) & = \\
\mathcal{V}(\Gamma, \operatorname{proc}(x) e, t) & = \\
\mathcal{V}\left(\Gamma, e_{1} e_{2}, t\right) & =
\end{aligned}
$$

Example

$$
\begin{array}{ll}
\mathcal{V}(\emptyset,(\operatorname{proc}(x)(x)) 1, \alpha) & \\
=\mathcal{V}\left(\emptyset, \operatorname{proc}(x)(x), \alpha_{1} \rightarrow \alpha\right) \wedge \mathcal{V}\left(\emptyset, 1, \alpha_{1}\right) & \text { new } \alpha_{1} \\
=\alpha_{1} \rightarrow \alpha \doteq \alpha_{2} \rightarrow \alpha_{3} \wedge \mathcal{V}\left(\left[x \mapsto \alpha_{2}\right], x, \alpha_{3}\right) \wedge \alpha_{1} \doteq \text { int } & \text { new } \alpha_{2}, \alpha_{3} \\
=\alpha_{1} \rightarrow \alpha \doteq \alpha_{2} \rightarrow \alpha_{3} \wedge \alpha_{2} \doteq \alpha_{3} \wedge \alpha_{1} \doteq \text { int } &
\end{array}
$$

Exercise 1

$\mathcal{V}(\emptyset, \operatorname{proc}(f)(f 11), \alpha)$

Exercise 2

$$
\mathcal{V}([x \mapsto \text { bool }], \text { if } x \text { then }(x-1) \text { else } 0, \alpha)
$$

Exercise 3

$\mathcal{V}(\emptyset, \operatorname{proc}(f)($ iszero $(f f)), \alpha)$

Summary

We have defined the algorithm for deriving type equations from program text:

- Given a program \boldsymbol{E}, call $\mathcal{V}(\emptyset, \boldsymbol{E}, \boldsymbol{\alpha})$ to derive type equations.
- Solve the equations and find the type assigned to $\boldsymbol{\alpha}$.

