COSE212: Programming Languages Lecture 1 — Inductive Definitions (1)

Hakjoo Oh 2018 Fall

Inductive Definitions

Inductive definition (induction) is widely used in the study of programming languages and computer science in general: e.g.,

- The syntax and semantics of programming languages
- Data structures (e.g., lists, trees, graphs)

Induction is a technique for formally defining a set:

- The set is defined in terms of itself.
- The only way of defining an infinite set by a finite means.

Three styles to inductive definition:

- Top-down
- Bottom-up
- Rules of inference

Example (Top-Down)

Let us define a certain subset S of natural numbers (\mathbb{N}) as follows:

Definition (S)

A natural number n is in S if and only if

$$oldsymbol{0}$$
 $n=0$, or

 $2 n-3 \in S.$

The definition is *inductive*, because the set is defined in terms of itself. What is the set S?

Example (Continued)

• . . .

Let us see what natural numbers are in S.

- 0 is in S because of the first condition of the definition.
- 3 is in S because 3 3 = 0 and 0 is in S.
- 6 is in S because 6-3=3 and 3 is in S.

We can conjecture that $\{0,3,6,9,\ldots\}\subseteq S.$

Proof by mathematical induction .

We show that $3k \in S$ for all $k \in \mathbb{N}$.

- **1** Base case: $3k \in S$ when k = 0.
- 2 Inductive case: Assume $3k \in S$ (Induction Hypothesis, I.H.). Then show $3 \cdot (k+1) \in S$, which holds because
 - $3 \cdot (k+1) 3 = 3k \in S$ by the induction hypothesis.

Example (Continued)

What about other numbers? Does S contain only the multiples of 3?

- For instance, $1 \in S$? No. Because the first condition is not true, the second condition must be true for 1 to be in S. However, it is not true because 1 3 = -2 is not a natural number. Similarly, we can show that $2 \notin S$.
- What about 4? Because $4-3=1 \not\in S$, $4 \not\in S$.

By similar reasoning, we can conjecture that if n is not a multiple of 3 then n is not in S. In other words, S contains multiples of 3 only: i.e.,

$$\{0,3,6,9,\ldots\}\supseteq S.$$

Proof by contradiction.

Let n = 3k + q (q = 1 or 2) and assume $n \in S$. By the definition of S, n - 3, n - 6, \ldots , $n - 3k \in S$. Thus, S must include 1 or 2, a contradiction.

A Bottom-up Definition

An alternative inductive definition of S:

Definition (S)

S is the $\mathit{smallest}$ set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:

- $oldsymbol{0} \in S$, and
- 2) if $n \in S$, then $n + 3 \in S$.
 - The two conditions imply $\{0,3,6,9,\ldots\}\subseteq S$.
 - ullet The two conditions do not imply $\{0,3,6,9,\ldots\}\supseteq S.$ E.g.,
 - \mathbb{N} satisfies the conditions: $0 \in \mathbb{N}$ and if $n \in \mathbb{N}$ then $n + 3 \in \mathbb{N}$.
 - ▶ $\{0,3,6,9,\ldots\} \cup \{1,4,7,10,\ldots\}$ satisfies the conditions.
 - This is why the definition requires S to be the smallest such a set.
 - The smallest set that satisfies the two conditions is unique:

$$S = \{0, 3, 6, 9, \ldots\}.$$

Rules of Inference

The third way is to define the set with inference rules. An inference rule is of the form:

$rac{A}{B}$

- A: hypothesis (antecedent)
- **B**: conclusion (consequent)
- "if A is true then B is also true".
- \overline{B} : axiom (inference rule without hypothesis)

The hypothesis may contain multiple statements:

$$\frac{A B}{C}$$

"If both $oldsymbol{A}$ and $oldsymbol{B}$ are true then so is $oldsymbol{C}$ ".

Rules of Inferences

Definition (S)

The set S is defined as inference rules as follows:

 $\overline{0\in S}$ $\overline{(n+3)\in S}$ Interpret the rules as follows:

"A natural number n is in S iff $n \in S$ can be derived from the axiom by

applying the inference rules finitely many times"

For example, $\mathbf{3} \in S$ because we can find a "proof/derivation tree":

 $\overline{ \substack{0 \in S \\ 3 \in S}}$ the axiom the second rule

but $1, 2, 4, \dots \notin S$ because we cannot find proofs. Note that this interpretation enforces that S is the smallest set closed under the inference rules.

Hakjoo Oh

Exercises

• What set is defined by the following inductive rules?

$$\overline{3}$$
 $\frac{x \ y}{x+y}$

What set is defined by the following inductive rules?

$$\overline{()}$$
 $\frac{s}{(s)}$ $\frac{s}{ss}$

Of Define the following set as rules of inference:

 $S = \{a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, \ldots\}$

Oefine the following set as rules of inference:

$$S = \{x^ny^{n+1} \mid n \in \mathbb{N}\}$$

Summary

In inductive definitions, a set is defined in terms of itself. Three styles:

- Top-down
- Bottom-up
- Rules of inference

In PL, we mainly use the rules-of-inference method.