Homework 2
COSE212, Fall 2018

Hakjoo Oh
Due: 10/14, 24:00

Academic Integrity / Assignment Policy

e All assignments must be your own work.

e Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

— Discussion must be limited to general discussion and must not involve
details of how to write code.

You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

— Do not allow other students to copy your code.

— Do not post your code on the public web.

e Violating above rules gets you 0 points for the entire HW score.

Problem 1 (10pts) In class, we defined the function reverse as follows:

let rec reverse 1 =
match 1 with
| 0 -> 10
| hd::tl -> (reverse tl) @ [hd]

This function is too slow in practice as its time complexity is O(n?). For instance,
reverse (range 1 100000) may not terminate quickly on typical machines.
However, list reversal can be implemented efficiently with time complexity O(n).
Write a function

fastrev : ’a list -> ’a list

that reverses a given list with in O(n). For instance, fastrev (range 1 100000)
should produce [100000; 99999; ...; 1] immediately.

Problem 2 (10pts) Write a function

app: ’a list ->’a list -> ’a list

which appends the first list to the second list while removing duplicated ele-
ments. For instance, given two lists [4;5;6;7] and [1;2;3;4], the function
should output [1;2;3;4;5;6;7]:

app [4;5;6;7] [1;2;3;4] = [1;2;3;4;5;6;7].
Problem 3 (10pts) Write a function
uniq: ’a list -> ’a list

which removes duplicated elements from a given list so that the list contains
unique elements. For instance,

uniq [5;6;5;4] = [5;6;4]
Problem 4 (10pts) Write a function reduce of the type:
reduce : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c
Given a function f of type ’a => ’b -> ’c -> ’c, the expression
reduce f [x1;x2;...;xn] [y1;y2;...;yn] cil
evaluates to £ xn yn (... (f x2 y2 (f x1 y1 c1))...). For example,
reduce (fun x y z -> x * y + z) [1;2;3] [0;1;2] O
evaluates to 8.
Problem 5 (15pts) Write a function
diff : aexp * string -> aexp

that differentiates the given algebraic expression with respect to the variable
given as the second argument. The algebraic expression aexp is defined as fol-

lows:
type aexp =
| Const of int
Var of string
Power of string * int
Times of aexp list
Sum of aexp list

For example, 22 + 2z + 1 is represented by
Sum [Power ("x", 2); Times [Const 2; Var "x"]; Const 1]
and differentiating it (w.r.t. “x”) gives 2z + 2, which can be represented by
Sum [Times [Comnst 2; Var "x"]; Const 2]

Note that the representation of 2x + 2 in aexp is not unique. For instance, the
following also represents 2x + 2:

Sum
[Times [Const 2; Power ("x", 1)]1;
Sum
[Times [Const 0; Var "x"];
Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Const 0]]11];
Const 0]

Problem 6 (15pts) Consider the following expressions:

type exp = X
| INT of int
| ADD of exp * exp
| SUB of exp * exp
| MUL of exp * exp
| DIV of exp * exp
|

SIGMA of exp * exp * exp

Implement a calculator for the expressions:
calculator : exp -> int

For instance,
10

Z(x xx—1)
r=1

is represented by
SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))
and evaluating it should give 375.

Problem 7 (30pts) It is fun to implement neural networks with higher-order
functions. Neural networks are essentially a programming language.! The goal
of this problem is to implement an evaluator (i.e., interpreter) for simple feed-
forward neural networks.

Let us first define neural networks. A neural network N = {Ly, Lo, ..., Lk}
(K > 2) is a collection of layers (1 < L; < K), where K is the number of layers.
For example, the following network is comprised of four layers (i.e., K = 4):

L, Ly L3 Ly

Input #1 —n1,1 41— Output #1

Input #2 —Mn1,2 N4z -— Output #2

1See https://medium.com/@karpathy/software-2-0-a64152b37c35

We call L; the input layer, L the output layer, and others (i.e., Lo, ..., Lx_1)
the hidden layers. Each layer consists of nodes (called neurons). Let s; be the
number of nodes in layer L;. Let n; ; (1 <i < K,1 < j <s;) be the j-th node
of layer L;. Each node computes a value of real number (R). Let v; ; € R be the
value of n; j. Except for the input layer, nodes in layer L; is fully connected to
nodes in layer L;_;, where each connection from n;_; ; to n; is associated with
a weight w; ;1 € R. Also each node n; ; (i > 2) is associated with a bias b; ; € R.
The weights and biases for nodes of layer L; (2 < i < K) can be represented by
a matrix W; € R%-1%5 and a vector B; € R% as follows:

Wi,1,1 Wi 1,2 oo W5 1,s; l;i,l
W, — Wi.2,1 W22 ... Wi2s, B — 7,",2
Wi,si—1,1 Wis; 1,2 -+ Wis; g, bi.s,
Let I = [01,1,111,2, e 7'U1,SJT € R*! be an input vector.? Evaluating a net-
work N for I is to propagate I through the network via the following equation:
w =1
Vi = fi(WiTVz'—1+Bi) 2<i< K)
VK = W%VKfl + BK

where f; € R% — R% is the activation function of layer L;, which is defined as
follows:

fi([z1, 29, ..., xs,]7) = [max(z1,0), max(x,0), ..., max(z,,,0)]7.

where max(a,b) is a if a > b and otherwise b. Note that we apply the ac-
tivation function only for the hidden layers. Finally, using the output Vx =
VK1, VK 2, - - - ,UK’SK]T, the neural network assigns a label [, i.e., the index of
the node of the output layer Ly with the largest value. That is, the output
of the neural network N for input I, which is denoted by N(I), is defined as
follows:

N(I) = argmax; ;< VK,

where argmax; <;,, v, denotes the index [at which the output (vg ;) of the
neural network is maximized (when there are multiple such indices, it returns
anything of them).

Let us implement a neural-network evaluator. In OCaml, a neural network
can be defined as follows:

type vector = float list
type matrix = float list list
type layer =
| Input
| Hidden of (matrix * vector)
| Output of (matrix * vector)
type network = layer list

2For matrix or vector A, AT denotes the transpose of A.

A vector is a list of real numbers and a matrix is a list of vectors. A layer is
input, hidden, or output, where hidden and output layers are associated with a
weight matrix and a bias vector.

1. (5pts) Write a function
addvec: vector -> vector -> vector

which adds two vectors. For example, addvec [1.0; 2.0] [3.0; 4.0]
evaluates to [4.0; 6.0].

2. (5pts) Write a function
mulmat: matrix -> vector -> vector

which multiplies a matrix and a vector. For example mulmat [[1.0;
2.0]; [3.0; 4.0]]1 [5.0; 6.0] evaluates to [17.0; 39.0].

3. (bpts) Write a function
transpose: matrix -> matrix

which performs the matrix transpose. For example tranpose [[1.0; 2.0];
[3.0; 4.0]] [5.0; 6.0] evaluates to [[1.0; 3.0]; [2.0; 4.0]1].

4. (5pts) Write a function
argmax: float list -> int

which takes a list of floats and returns the index of the maximal element.
For example, argmax [-0.46; 0.53; 0.64; 0.12] evaluates to 2.

5. (10pts) Write a function
nneval: network -> vector -> int

which takes a neural network (N) and an input vector (I), and computes
N(I).

Consider the following network (net):

let layer2 = ([[-0.46; 0.53; 0.64; 0.12];

[0.78; 0.62; -0.89; -0.34]11, [0.03; -0.03; 0.03; -0.02])
let layer3 = ([[-0.13; -0.96];

[-0.48; 0.13];

[0.78; -0.49];

[-0.04; -0.0511, [0.03; -0.03])
let net = [Input; Hidden layer2; Output layer3]

which has an input layer (with 2 neurons), a hidden layer (with 4 neurons),
and an output layer (with 2 neurons). For example,

e nneval net [0.0; 0.0]
e nneval net [0.0; 1.0]

e nneval net [1.0; 0.0]

0
0
0
e nneval net [1.0; 1.0] 1

Note that this neural network can be seen as a program that implements
the “AND” function.

