Homework 2 COSE212, Fall 2018

Hakjoo Oh

Due: 10/14, 24:00

Academic Integrity / Assignment Policy

- All assignments must be your own work.
- Discussion with fellow students is encouraged including how to approach the problem. However, your code must be your own.
 - Discussion must be limited to general discussion and must not involve details of how to write code.
 - You must write your code by yourself and must not look at someone else's code (including ones on the web).
 - Do not allow other students to copy your code.
 - Do not post your code on the public web.
- Violating above rules gets you 0 points for the entire HW score.

Problem 1 (10pts) In class, we defined the function reverse as follows:

```
let rec reverse 1 =
  match 1 with
  | [] -> []
  | hd::tl -> (reverse tl) @ [hd]
```

This function is too slow in practice as its time complexity is $O(n^2)$. For instance, reverse (range 1 100000) may not terminate quickly on typical machines. However, list reversal can be implemented efficiently with time complexity O(n). Write a function

```
fastrev : 'a list -> 'a list
```

that reverses a given list with in O(n). For instance, fastrev (range 1 100000) should produce [100000; 99999; ...; 1] immediately.

Problem 2 (10pts) Write a function

```
app: 'a list -> 'a list -> 'a list
```

which appends the first list to the second list while removing duplicated elements. For instance, given two lists [4;5;6;7] and [1;2;3;4], the function should output [1;2;3;4;5;6;7]:

app
$$[4;5;6;7]$$
 $[1;2;3;4] = [1;2;3;4;5;6;7]$.

Problem 3 (10pts) Write a function

which removes duplicated elements from a given list so that the list contains unique elements. For instance,

uniq
$$[5;6;5;4] = [5;6;4]$$

Problem 4 (10pts) Write a function reduce of the type:

Given a function f of type 'a -> 'b -> 'c, the expression

evaluates to f xn yn (... (f x2 y2 (f x1 y1 c1))...). For example,

reduce (fun x y z
$$\rightarrow$$
 x * y + z) [1;2;3] [0;1;2] 0

evaluates to 8.

Problem 5 (15pts) Write a function

that differentiates the given algebraic expression with respect to the variable given as the second argument. The algebraic expression <code>aexp</code> is defined as follows:

For example, $x^2 + 2x + 1$ is represented by

and differentiating it (w.r.t. "x") gives 2x + 2, which can be represented by

Note that the representation of 2x + 2 in aexp is not unique. For instance, the following also represents 2x + 2:

Sum
[Times [Const 2; Power ("x", 1)];
Sum
[Times [Const 0; Var "x"];

Times [Const 0; Var "x"];
Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Const 0]]]];
Const 0]

Problem 6 (15pts) Consider the following expressions:

Implement a calculator for the expressions:

For instance,

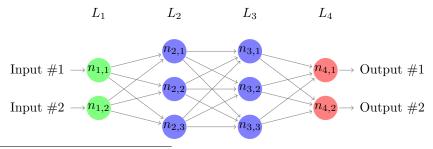
$$\sum_{x=1}^{10} (x * x - 1)$$

is represented by

and evaluating it should give 375.

Problem 7 (30pts) It is fun to implement neural networks with higher-order functions. Neural networks are essentially a programming language. The goal of this problem is to implement an evaluator (i.e., interpreter) for simple feedforward neural networks.

Let us first define neural networks. A neural network $N = \{L_1, L_2, \dots, L_K\}$ $(K \ge 2)$ is a collection of layers $(1 \le L_i \le K)$, where K is the number of layers. For example, the following network is comprised of four layers (i.e., K = 4):



 $^{^{1}\}mathrm{See}\ \mathtt{https://medium.com/@karpathy/software-2-0-a64152b37c35}$

We call L_1 the input layer, L_K the output layer, and others (i.e., L_2, \ldots, L_{K-1}) the hidden layers. Each layer consists of nodes (called neurons). Let s_i be the number of nodes in layer L_i . Let $n_{i,j}$ $(1 \le i \le K, 1 \le j \le s_i)$ be the j-th node of layer L_i . Each node computes a value of real number (\mathbb{R}) . Let $v_{i,j} \in \mathbb{R}$ be the value of $n_{i,j}$. Except for the input layer, nodes in layer L_i is fully connected to nodes in layer L_{i-1} , where each connection from $n_{i-1,j}$ to $n_{i,k}$ is associated with a weight $w_{i,j,k} \in \mathbb{R}$. Also each node $n_{i,j}$ $(i \ge 2)$ is associated with a bias $b_{i,j} \in \mathbb{R}$. The weights and biases for nodes of layer L_i $(2 \le i \le K)$ can be represented by a matrix $W_i \in \mathbb{R}^{s_{i-1} \times s_i}$ and a vector $B_i \in \mathbb{R}^{s_i}$ as follows:

$$W_{i} = \begin{bmatrix} w_{i,1,1} & w_{i,1,2} & \dots & w_{i,1,s_{i}} \\ w_{i,2,1} & w_{i,2,2} & \dots & w_{i,2,s_{i}} \\ \vdots \\ w_{i,s_{i-1},1} & w_{i,s_{i-1},2} & \dots & w_{i,s_{i-1},s_{i}} \end{bmatrix} \qquad B_{i} = \begin{bmatrix} b_{i,1} \\ b_{i,2} \\ \vdots \\ b_{i,s_{i}} \end{bmatrix}$$

Let $I = \begin{bmatrix} v_{1,1}, v_{1,2}, \dots, v_{1,s_1} \end{bmatrix}^T \in \mathbb{R}^{s_1}$ be an input vector.² Evaluating a network N for I is to propagate I through the network via the following equation:

$$\begin{array}{rcl} V_1 & = & I \\ V_i & = & f_i(W_i^T V_{i-1} + B_i) & (2 \leq i < K) \\ V_K & = & W_K^T V_{K-1} + B_K \end{array}$$

where $f_i \in \mathbb{R}^{s_i} \to \mathbb{R}^{s_i}$ is the activation function of layer L_i , which is defined as follows:

$$f_i([x_1, x_2, \dots, x_{s_i}]^T) = [\max(x_1, 0), \max(x_2, 0), \dots, \max(x_{s_i}, 0)]^T.$$

where $\max(a,b)$ is a if a > b and otherwise b. Note that we apply the activation function only for the hidden layers. Finally, using the output $V_K = [v_{K,1}, v_{K,2}, \dots, v_{K,s_K}]^T$, the neural network assigns a $label\ l$, i.e., the index of the node of the output layer L_K with the largest value. That is, the output of the neural network N for input I, which is denoted by N(I), is defined as follows:

$$N(I) = \operatorname{argmax}_{1 \le l \le s_K} v_{K,l}$$

where $\operatorname{argmax}_{1 \leq l \leq s_K} v_{K,l}$ denotes the index l at which the output $(v_{K,l})$ of the neural network is maximized (when there are multiple such indices, it returns anything of them).

Let us implement a neural-network evaluator. In OCaml, a neural network can be defined as follows:

```
type vector = float list
type matrix = float list list
type layer =
    | Input
    | Hidden of (matrix * vector)
    | Output of (matrix * vector)
type network = layer list
```

²For matrix or vector A, A^T denotes the transpose of A.

A vector is a list of real numbers and a matrix is a list of vectors. A layer is input, hidden, or output, where hidden and output layers are associated with a weight matrix and a bias vector.

1. (5pts) Write a function

```
addvec: vector -> vector -> vector
```

which adds two vectors. For example, addvec [1.0; 2.0] [3.0; 4.0] evaluates to [4.0; 6.0].

2. (5pts) Write a function

```
mulmat: matrix -> vector -> vector
```

which multiplies a matrix and a vector. For example mulmat [[1.0; 2.0]; [3.0; 4.0]] [5.0; 6.0] evaluates to [17.0; 39.0].

3. (5pts) Write a function

```
transpose: matrix -> matrix
```

which performs the matrix transpose. For example transpose [[1.0; 2.0]; [3.0; 4.0]] [5.0; 6.0] evaluates to [[1.0; 3.0]; [2.0; 4.0]].

4. (5pts) Write a function

```
argmax: float list -> int
```

which takes a list of floats and returns the index of the maximal element. For example, argmax [-0.46; 0.53; 0.64; 0.12] evaluates to 2.

5. (10pts) Write a function

```
nneval: network -> vector -> int
```

which takes a neural network (N) and an input vector (I), and computes N(I).

Consider the following network (net):

which has an input layer (with 2 neurons), a hidden layer (with 4 neurons), and an output layer (with 2 neurons). For example,

```
• nneval net [0.0; 0.0] = 0
```

- nneval net [0.0; 1.0] = 0
- nneval net [1.0; 0.0] = 0
- nneval net [1.0; 1.0] = 1

Note that this neural network can be seen as a program that implements the "AND" function.