
Homework 2

COSE212, Fall 2018

Hakjoo Oh

Due: 10/14, 24:00

Academic Integrity / Assignment Policy

• All assignments must be your own work.

• Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

– Discussion must be limited to general discussion and must not involve
details of how to write code.

– You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

– Do not allow other students to copy your code.

– Do not post your code on the public web.

• Violating above rules gets you 0 points for the entire HW score.

Problem 1 (10pts) In class, we defined the function reverse as follows:

let rec reverse l =

match l with

| [] -> []

| hd::tl -> (reverse tl) @ [hd]

This function is too slow in practice as its time complexity is O(n2). For instance,
reverse (range 1 100000) may not terminate quickly on typical machines.
However, list reversal can be implemented efficiently with time complexity O(n).
Write a function

fastrev : ’a list -> ’a list

that reverses a given list with in O(n). For instance, fastrev (range 1 100000)

should produce [100000; 99999; ...; 1] immediately.

Problem 2 (10pts) Write a function

app: ’a list ->’a list -> ’a list

1

which appends the first list to the second list while removing duplicated ele-
ments. For instance, given two lists [4;5;6;7] and [1;2;3;4], the function
should output [1;2;3;4;5;6;7]:

app [4;5;6;7] [1;2;3;4] = [1;2;3;4;5;6;7].

Problem 3 (10pts) Write a function

uniq: ’a list -> ’a list

which removes duplicated elements from a given list so that the list contains
unique elements. For instance,

uniq [5;6;5;4] = [5;6;4]

Problem 4 (10pts) Write a function reduce of the type:

reduce : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c

Given a function f of type ’a -> ’b -> ’c -> ’c, the expression

reduce f [x1;x2;...;xn] [y1;y2;...;yn] c1

evaluates to f xn yn (... (f x2 y2 (f x1 y1 c1))...). For example,

reduce (fun x y z -> x * y + z) [1;2;3] [0;1;2] 0

evaluates to 8.

Problem 5 (15pts) Write a function

diff : aexp * string -> aexp

that differentiates the given algebraic expression with respect to the variable
given as the second argument. The algebraic expression aexp is defined as fol-
lows:

type aexp =

| Const of int

| Var of string

| Power of string * int

| Times of aexp list

| Sum of aexp list

For example, x2 + 2x + 1 is represented by

Sum [Power ("x", 2); Times [Const 2; Var "x"]; Const 1]

and differentiating it (w.r.t. “x”) gives 2x + 2, which can be represented by

Sum [Times [Const 2; Var "x"]; Const 2]

Note that the representation of 2x + 2 in aexp is not unique. For instance, the
following also represents 2x + 2:

2

Sum

[Times [Const 2; Power ("x", 1)];

Sum

[Times [Const 0; Var "x"];

Times [Const 2; Sum [Times [Const 1]; Times [Var "x"; Const 0]]]];

Const 0]

Problem 6 (15pts) Consider the following expressions:

type exp = X

| INT of int

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| SIGMA of exp * exp * exp

Implement a calculator for the expressions:

calculator : exp -> int

For instance,
10∑
x=1

(x ∗ x− 1)

is represented by

SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))

and evaluating it should give 375.

Problem 7 (30pts) It is fun to implement neural networks with higher-order
functions. Neural networks are essentially a programming language.1 The goal
of this problem is to implement an evaluator (i.e., interpreter) for simple feed-
forward neural networks.

Let us first define neural networks. A neural network N = {L1, L2, . . . , LK}
(K ≥ 2) is a collection of layers (1 ≤ Li ≤ K), where K is the number of layers.
For example, the following network is comprised of four layers (i.e., K = 4):

n1,1Input #1

n1,2Input #2

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

n4,1 Output #1

n4,2 Output #2

L2 L3L1 L4

1See https://medium.com/@karpathy/software-2-0-a64152b37c35

3

We call L1 the input layer, LK the output layer, and others (i.e., L2, . . . , LK−1)
the hidden layers. Each layer consists of nodes (called neurons). Let si be the
number of nodes in layer Li. Let ni,j (1 ≤ i ≤ K, 1 ≤ j ≤ si) be the j-th node
of layer Li. Each node computes a value of real number (R). Let vi,j ∈ R be the
value of ni,j . Except for the input layer, nodes in layer Li is fully connected to
nodes in layer Li−1, where each connection from ni−1,j to ni,k is associated with
a weight wi,j,k ∈ R. Also each node ni,j (i ≥ 2) is associated with a bias bi,j ∈ R.
The weights and biases for nodes of layer Li (2 ≤ i ≤ K) can be represented by
a matrix Wi ∈ Rsi−1×si and a vector Bi ∈ Rsi as follows:

Wi =


wi,1,1 wi,1,2 . . . wi,1,si

wi,2,1 wi,2,2 . . . wi,2,si

. . .
wi,si−1,1 wi,si−1,2 . . . wi,si−1,si

 Bi =


bi,1
bi,2

...
bi,si


Let I =

[
v1,1, v1,2, . . . , v1,s1

]T ∈ Rs1 be an input vector.2 Evaluating a net-
work N for I is to propagate I through the network via the following equation:

V1 = I
Vi = fi(W

T
i Vi−1 + Bi) (2 ≤ i < K)

VK = WT
KVK−1 + BK

where fi ∈ Rsi → Rsi is the activation function of layer Li, which is defined as
follows:

fi([x1, x2, . . . , xsi]
T) = [max(x1, 0),max(x2, 0), . . . ,max(xsi , 0)]T .

where max(a, b) is a if a > b and otherwise b. Note that we apply the ac-
tivation function only for the hidden layers. Finally, using the output VK =
[vK,1, vK,2, . . . , vK,sK]T , the neural network assigns a label l, i.e., the index of
the node of the output layer LK with the largest value. That is, the output
of the neural network N for input I, which is denoted by N(I), is defined as
follows:

N(I) = argmax1≤l≤sKvK,l

where argmax1≤l≤sKvK,l denotes the index l at which the output (vK,l) of the
neural network is maximized (when there are multiple such indices, it returns
anything of them).

Let us implement a neural-network evaluator. In OCaml, a neural network
can be defined as follows:

type vector = float list

type matrix = float list list

type layer =

| Input

| Hidden of (matrix * vector)

| Output of (matrix * vector)

type network = layer list

2For matrix or vector A, AT denotes the transpose of A.

4

A vector is a list of real numbers and a matrix is a list of vectors. A layer is
input, hidden, or output, where hidden and output layers are associated with a
weight matrix and a bias vector.

1. (5pts) Write a function

addvec: vector -> vector -> vector

which adds two vectors. For example, addvec [1.0; 2.0] [3.0; 4.0]

evaluates to [4.0; 6.0].

2. (5pts) Write a function

mulmat: matrix -> vector -> vector

which multiplies a matrix and a vector. For example mulmat [[1.0;

2.0]; [3.0; 4.0]] [5.0; 6.0] evaluates to [17.0; 39.0].

3. (5pts) Write a function

transpose: matrix -> matrix

which performs the matrix transpose. For example tranpose [[1.0; 2.0];

[3.0; 4.0]] [5.0; 6.0] evaluates to [[1.0; 3.0]; [2.0; 4.0]].

4. (5pts) Write a function

argmax: float list -> int

which takes a list of floats and returns the index of the maximal element.
For example, argmax [-0.46; 0.53; 0.64; 0.12] evaluates to 2.

5. (10pts) Write a function

nneval: network -> vector -> int

which takes a neural network (N) and an input vector (I), and computes
N(I).

Consider the following network (net):

let layer2 = ([[-0.46; 0.53; 0.64; 0.12];

[0.78; 0.62; -0.89; -0.34]], [0.03; -0.03; 0.03; -0.02])

let layer3 = ([[-0.13; -0.96];

[-0.48; 0.13];

[0.78; -0.49];

[-0.04; -0.05]], [0.03; -0.03])

let net = [Input; Hidden layer2; Output layer3]

which has an input layer (with 2 neurons), a hidden layer (with 4 neurons),
and an output layer (with 2 neurons). For example,

5

• nneval net [0.0; 0.0] = 0

• nneval net [0.0; 1.0] = 0

• nneval net [1.0; 0.0] = 0

• nneval net [1.0; 1.0] = 1

Note that this neural network can be seen as a program that implements
the “AND” function.

6

