Homework 1
COSE212, Fall 2018

Hakjoo Oh
Due: 9/30, 24:00

Academic Integrity / Assignment Policy

e All assignments must be your own work.

e Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

— Discussion must be limited to general discussion and must not involve
details of how to write code.

You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

Do not allow other students to copy your code.

— Do not post your code on the public web.

e Violating above rules gets you 0 points for the entire HW score.

Problem 1 (5pts) Write a function
prime: int -> bool

that checks whether a number is prime (n is prime if and only if n is its own
smallest divisor except for 1). For example,

prime 2 = true
prime 3 = true
prime 4 = false
prime 17 = true

Problem 2 (5pts) Write a function
range : int -> int -> int list

that takes two integers n and m, and creates a list of integers from n to m. For
example, range 3 7 produces [3;4;5;6;7]. Assume that n < m.

Problem 3 (10pts) Write a function
dfact : int -> int

that computes double-factorials. Given a non-negative integer n, its double-
factorial, denoted n!!, is the product of all the integers of the same parity as n
from 1 to n. That is, when n is even

n/2
=@k =n-(n-2)-(n—4)---4-2
k=1

and when n is odd,

(n+1)/2
=] @k-1)=n-(n-2)-(n—4)---3-1

k=1
For example, 7!l =1 x 3 x5 x 7 =105 and 6!! =2 %4 %6 = 48.
Problem 4 (10pts) Define the function iter:
iter : int * (int -> int) -> (int -> int)

such that
iter(n,f) = fo---of.
——

n

When n = 0, iter(n, f) is defined to be the identity function. When n > 0,
iter(n, f) is the function that applies f repeatedly n times. For instance,

iter(n, fun x -> 2+x) 0
evaluates to 2 X n.

Problem 5 (10pts) Natural numbers are defined inductively:
n
0 n+1

In OCaml, the inductive definition can be defined by the following a data type:
type nat = ZERO | SUCC of nat

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two
functions that add and multiply natural numbers:

natadd : nat -> nat -> nat
natmul : nat -> nat -> nat

For example,

let two = SUCC (SUCC ZERD);;

val two : nat = SUCC (SUCC ZERO)

let three = SUCC (SUCC (SUCC ZERD));;

val three : nat = SUCC (SUCC (SUCC ZEROD))

natmul two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZER0)))))
natadd two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERD))))

Problem 6 (10pts) Consider the inductive definition of binary trees:

t t tq to
nnE€Z (¢nil) (nilt) (t1,t2)

which can be defined in OCaml as follows:

type btree =
| Leaf of int
| Left of btree
| Right of btree
| LeftRight of btree * btree

For example, binary tree ((1,2),nil) is represented by
Left (LeftRight (Leaf 1, Leaf 2))

Write a function that exchanges the left and right subtrees all the ways down.
For example, mirroring the tree ((1,2),nil) produces (nil, (2,1)); that is,

mirror (Left (LeftRight (Leaf 1, Leaf 2)))

evaluates to
Right (LeftRight (Leaf 2, Leaf 1)).

Problem 7 (10pts) Consider the following propositional formula:

type formula =
| True
| False
| Not of formula
| AndAlso of formula * formula
| OrElse of formula * formula
| Imply of formula * formula
| Equal of exp * exp
and exp =
| Num of int
| Plus of exp * exp
| Minus of exp * exp

Write the function
eval : formula -> bool

that computes the truth value of a given formula. For example,
eval (Imply (Imply (True,False), True))
evaluates to true, and
eval (Equal (Num 1, Plus (Num 1, Num 2)))
evaluates to false.
Problem 8 (10pts) Write a higher-order function
all : (’a -> bool) -> ’a list -> bool
which decides if all elements of a list satisfy a predicate. For example,
all (fun x -> x mod 2 = 0) [1;2;3]
evaluates to false while
all (fun x -> x > 5) [7;8;9]
is true.
Problem 9 (10pts) Write a higher-order function
drop : (’a -> bool) -> ’a list -> ’a list
which removes elements of a list while they satisfy a predicate. For example,
drop (fun x -> x mod 2 = 1) [1;3;5;6;7]
evaluates to [6;7] and
drop (fun x-> x > 5) [1;3;7]
evaluates to [1;3;7].
Problem 10 (10pts) Write a function
1st2int : int list -> int
which converts a list of integers to an integer. For example;
lst2int [2;3;4;5] = 2345.
Problem 11 (10pts) Write a function
concat: ’a list list -> ’a list
which makes a list consisting of all the elements of a list of lists. For example,

concat [[1;2];[3;4;5]] = [1;2;3;4;5]

