
Homework 1

COSE212, Fall 2018

Hakjoo Oh

Due: 9/30, 24:00

Academic Integrity / Assignment Policy

• All assignments must be your own work.

• Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

– Discussion must be limited to general discussion and must not involve
details of how to write code.

– You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

– Do not allow other students to copy your code.

– Do not post your code on the public web.

• Violating above rules gets you 0 points for the entire HW score.

Problem 1 (5pts) Write a function

prime: int -> bool

that checks whether a number is prime (n is prime if and only if n is its own
smallest divisor except for 1). For example,

prime 2 = true

prime 3 = true

prime 4 = false

prime 17 = true

Problem 2 (5pts) Write a function

range : int -> int -> int list

that takes two integers n and m, and creates a list of integers from n to m. For
example, range 3 7 produces [3;4;5;6;7]. Assume that n ≤ m.

1

Problem 3 (10pts) Write a function

dfact : int -> int

that computes double-factorials. Given a non-negative integer n, its double-
factorial, denoted n!!, is the product of all the integers of the same parity as n
from 1 to n. That is, when n is even

n!! =

n/2∏
k=1

(2k) = n · (n− 2) · (n− 4) · · · 4 · 2

and when n is odd,

n!! =

(n+1)/2∏
k=1

(2k − 1) = n · (n− 2) · (n− 4) · · · 3 · 1

For example, 7!! = 1× 3× 5× 7 = 105 and 6!! = 2 ∗ 4 ∗ 6 = 48.

Problem 4 (10pts) Define the function iter:

iter : int * (int -> int) -> (int -> int)

such that
iter(n, f) = f ◦ · · · ◦ f︸ ︷︷ ︸

n

.

When n = 0, iter(n, f) is defined to be the identity function. When n > 0,
iter(n, f) is the function that applies f repeatedly n times. For instance,

iter(n, fun x -> 2+x) 0

evaluates to 2× n.

Problem 5 (10pts) Natural numbers are defined inductively:

0

n

n + 1

In OCaml, the inductive definition can be defined by the following a data type:

type nat = ZERO | SUCC of nat

For instance, SUCC ZERO denotes 1 and SUCC (SUCC ZERO) denotes 2. Write two
functions that add and multiply natural numbers:

natadd : nat -> nat -> nat

natmul : nat -> nat -> nat

For example,

2

let two = SUCC (SUCC ZERO);;

val two : nat = SUCC (SUCC ZERO)

let three = SUCC (SUCC (SUCC ZERO));;

val three : nat = SUCC (SUCC (SUCC ZERO))

natmul two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC (SUCC ZERO)))))

natadd two three;;

- : nat = SUCC (SUCC (SUCC (SUCC (SUCC ZERO))))

Problem 6 (10pts) Consider the inductive definition of binary trees:

n n ∈ Z
t

(t,nil)
t

(nil, t)

t1 t2
(t1, t2)

which can be defined in OCaml as follows:

type btree =

| Leaf of int

| Left of btree

| Right of btree

| LeftRight of btree * btree

For example, binary tree ((1, 2),nil) is represented by

Left (LeftRight (Leaf 1, Leaf 2))

Write a function that exchanges the left and right subtrees all the ways down.
For example, mirroring the tree ((1, 2),nil) produces (nil, (2, 1)); that is,

mirror (Left (LeftRight (Leaf 1, Leaf 2)))

evaluates to
Right (LeftRight (Leaf 2, Leaf 1)).

Problem 7 (10pts) Consider the following propositional formula:

type formula =

| True

| False

| Not of formula

| AndAlso of formula * formula

| OrElse of formula * formula

| Imply of formula * formula

| Equal of exp * exp

and exp =

| Num of int

| Plus of exp * exp

| Minus of exp * exp

3

Write the function
eval : formula -> bool

that computes the truth value of a given formula. For example,

eval (Imply (Imply (True,False), True))

evaluates to true, and

eval (Equal (Num 1, Plus (Num 1, Num 2)))

evaluates to false.

Problem 8 (10pts) Write a higher-order function

all : (’a -> bool) -> ’a list -> bool

which decides if all elements of a list satisfy a predicate. For example,

all (fun x -> x mod 2 = 0) [1;2;3]

evaluates to false while

all (fun x -> x > 5) [7;8;9]

is true.

Problem 9 (10pts) Write a higher-order function

drop : (’a -> bool) -> ’a list -> ’a list

which removes elements of a list while they satisfy a predicate. For example,

drop (fun x -> x mod 2 = 1) [1;3;5;6;7]

evaluates to [6;7] and

drop (fun x-> x > 5) [1;3;7]

evaluates to [1;3;7].

Problem 10 (10pts) Write a function

lst2int : int list -> int

which converts a list of integers to an integer. For example;

lst2int [2;3;4;5] = 2345.

Problem 11 (10pts) Write a function

concat: ’a list list -> ’a list

which makes a list consisting of all the elements of a list of lists. For example,

concat [[1;2];[3;4;5]] = [1;2;3;4;5]

4

