
Final Exam
COSE212 Programming Languages, Fall 2015

Instructor: Hakjoo Oh

Problem 1 (10pts) Natural numbers are inductively de-
fined as follows:

n → ◦ | S n

where ◦ denotes 0, S ◦ denotes 1, S (S ◦) denotes 2, and so
on.

1. Define a function

add : n× n→ n

that adds two natural numbers.

2. Define a function

mul : n× n→ n

that multiplies two natural numbers.

Problem 2 (10pts) The common pattern of the functions
that accumulate something over a list can be captured by the
higher-order function fold:

let rec fold f l a =

match l with

| [] -> a

| hd::tl -> f hd (fold f tl a)

Re-write the following functions using fold:

1. let rec length l =

match l with

| [] -> 0

| hd::tl -> 1 + length tl

2. let rec append x y =

match x with

| [] -> y

| hd::tl -> hd::(append tl y)

Problem 3 (10pts) Consider the minimal yet Turing-complete
programming language:

E → x | proc x E | E E

1. Define its semantics with static scoping. The domain is
given below.

Val = Procedure
Procedure = Var × E × Env

Env = Var → Val

2. Define its semantics with dynamic scoping. The domain
is given below.

Val = Procedure
Procedure = Var × E

Env = Var → Val

Problem 4 (10pts) Convert the following programs into the
lexical-address-based nameless representation:

1. let a = 1 in let b = 2 in a + b

2. let x = 3

in proc (y)

let z = (y - x)

in (x - z + y)

Problem 5 (10pts) Assuming static scoping for proce-
dures, compare the behaviors and final values of the fol-
lowing two programs.

1. let f = let counter = ref 0

in proc (x) (counter := !counter + 1;

!counter)

in let a = (f 0)

in let b = (f 0)

in (a - b)

2. let f = proc (x) (let counter = ref 0

in (counter := !counter + 1;

!counter))

in let a = (f 0)

in let b = (f 0)

in (a - b)

1 2017/11/30

Problem 6 (10pts) Infer the type of (λx.x) 1:

(λx. x︸︷︷︸
1︸ ︷︷ ︸

2

) 1︸︷︷︸
3

︸ ︷︷ ︸
4

1. (5pts) Generate type equations.

2. (10pts) Solve the equations using the unification algo-
rithm. Explain each step clearly.

Problem 7 (20pts) Consider the following language:

E → true | false | n | E1 + E2 | if E1 E2 E3

and the lambda calculus:

L→ x | λx.L | L1 L2

We write E for the equivalent lambda term in L: that is, if
E goes to a value v and E goes to a value l in lambda term,
then v = l. Define E:

Problem 8 (20pts) O/X questions:

1. {3n | n ∈ N} (N = {0, 1, 2, 3, . . . }) is the only set S
that satisfies the following two properties:

(a) 0 ∈ S, and

(b) if n ∈ S, then n+ 3 ∈ S
2. Determining the values of program variables is a static

property.

3. C supports call-by-reference for procedure calls.

4. Computers came first than programming languages.

5. C’s pointers, structs, set-jumps/long-jumps, gotos, lo-
cal blocks, and loops are all syntactic sugars of eager-
evaluating λ-calculus.

6. All syntactically correct programs run OK in this lan-
guage:

C → x := E | C;C
E → Z | B
Z → n | Z + Z | x
B → true | false | Z < Z

7. There is only one redex in ((λx.λy.x) 1) 2.

8. The factorial function can be defined by

fact = Y (λf.λn.if n = 0 then 1 else n ∗ f(n− 1))

where Y is the Y-combinator.

9. We can design a sound and complete type system for
Java.

10. It is possible for the lambda calculus to simulate all
language constructs of Java.

2 2017/11/30

