COSE212: Programming Languages

Lecture 8 — Type System
(1) Motivation

Hakjoo Oh
2017 Fall

Hakjoo Oh COSE212 2017 Fall, Lecture 8

November 1, 2017

1/9

Review: Our Programming Language System So Far

@ Designed and implemented a programming language system:

» Rigorously defined syntax and semantics of the language.
» Faithfully implemented the interpreter based on the formal design.

Program — | Interpreter | — Result

@ A well-designed language indeed, with clean syntax and semantics :-)

@ However, the current system has a significant shortcoming.

Hakjoo Oh COSE212 2017 Fall, Lecture 8 November 1, 2017 2/9

The Language System is Unsafe

@ It attempts to execute unsafe programs too, only to fail at runtime.

Unsafe Program — | Interpreter | — Runtime Failure

For example,

» if 3 then 88 else 99
» (proc (x) (x 3)) 4
» let x = iszero 0 in (3-x)

@ We want to avoid evaluating unsafe programs but the language
system puts all the burden of writing safe programs on the
programmers.

» Also in C, C++, Python, JavaScript, etc.

@ This manual approach of avoiding software errors has proven
extremely unsuccessful.

Hakjoo Oh COSE212 2017 Fall, Lecture 8 November 1, 2017

Software Failures in History

@ (1996) The Arian-5 rocket, whose development required 10 years and
$8 billion, exploded just 37s after launch due to software error.

@ (1998) NASA's Mars climate orbiter lost in space. Cost: $125 million

@ (2000) Accidents in radiation therapy system. Cost: 8 patients died

@ (2007) Air control system shutdown in LA airport. Cost: 6,000
passengers stranded

@ (2012) Glitch in trading software of Knight Captal. Cost: $440 million

@ (2014) Airbag malfunction of Nissan vehicles. Cost: $1 million
vehicles recalled

@ ... Countless software projects failed in history.

Hakjoo Oh COSE212 2017 Fall, Lecture 8 November 1, 2017 4/9

Dream: Safe Language System

@ Automated technology for analyzing the safety and detecting all bugs
of programs statically.

Program — ‘Analyzer‘ — ‘ Interpreter | — Result

Hakjoo Oh COSE212 2017 Fall, Lecture 8 November 1, 2017 5/9

Dream: Safe Language System

@ Automated technology for analyzing the safety and detecting all bugs
of programs statically.

Program — ‘Analyzer‘ — ‘ Interpreter | — Result

@ Unfortunately, “static analysis” is undecidable.

Halting problem is
undecidable!

@ More precisely, sound and complete static analysis is impossible.

@ Approximate (yet useful) ones are possible.

Hakjoo Oh COSE212 2017 Fall, Lecture 8 November 1, 2017 5/9

Soundness and Completeness

@ Soundness: Analyzer can prove the absence of errors. If analyzer
accepts a program, then the program is safe. If a program has errors,
analyzer rejects the program. All unsafe programs are rejected. No
false negatives.

o Completeness: Analyzer can prove the presence of errors. If analyzer
rejects a program, then the program has errors. If the program is safe,
analyzer accepts the program. All safe programs are accepted. No
false positives.

Hakjoo Oh COSE212 2017 Fall, Lecture 8 November 1, 2017 6/9

Plan: Building a Static Type System for Our Language

Static analyzer that detects type errors (runtime failures caused by type
mismatches).

x
5% | Interpreter [— go well

Type

Checker \

if true then 88 else 99

if 3 then 88 else 99

(proc (x) (x 3)) (proc (x) x)
(proc (x) (3 x)) e

let x = iszero 0 in (3-x)

program ——

reject

cf) Detecting other types of errors is beyond the scope of our type system,
e.g., ((proc (x) (4 / x)) O.

Hakjoo Oh COSE212 2017 Fall, Lecture 8 November 1, 2017 7/9

Sound but Incomplete Type System

o We settle for a sound but incomplete type system.

» Sound: detecting all type errors.
» Incomplete: some safe programs will not pass our type system.

@ Type systems in modern programming languages such as ML, Haskell,
and Scala are also sound but incomplete.

o cf) Type systems in languages like C and C++ are neither sound nor
complete.

Hakjoo Oh COSE212 2017 Fall, Lecture 8 November 1, 2017 8/9

Next: Sound Type System for PROC

iszero E

if F then F else E
letx =F in E
proc x E

E — n
| =
|
|
|
|
|
|
| EE

Hakjoo Oh COSE212 2017 Fall, Lecture 8 November 1, 2017

9/9

