COSE212: Programming Languages

Lecture 6 - Design and Implementation of PLs
 (2) Procedures

Hakjoo Oh
2017 Fall

Review: The Let Language

Syntax:

Review: The Let Language

Semantic domain:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool } \\
\text { Env } & =\text { Var } \rightarrow \text { Val }
\end{aligned}
$$

Semantics rules:

$$
\begin{array}{cc}
\overline{\rho \vdash n \Rightarrow n} & \overline{\rho \vdash x \Rightarrow \rho(x)} \\
\frac{\rho \vdash E_{1} \Rightarrow n_{1}}{\rho \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}} & \frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}-E_{2} \Rightarrow n_{1}-n_{2}} \\
\frac{\rho \vdash \text { read } \Rightarrow n}{\rho \vdash n_{2}} \quad \frac{\rho \vdash \text { iszero } E \Rightarrow \text { true }}{\rho \vdash} \quad \frac{\rho \vdash E \Rightarrow n}{\rho \vdash \text { iszero } E \Rightarrow \text { false }} n \neq 0 \\
\frac{\rho \vdash E_{1} \Rightarrow \text { true }}{\rho \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v} & \frac{\rho \vdash E_{2} \Rightarrow v}{\rho \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v} \\
\frac{\rho \vdash E_{1} \Rightarrow v_{1} \quad\left[x \mapsto v_{1}\right] \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \operatorname{let} x=E_{1} \text { in } E_{2} \Rightarrow v}
\end{array}
$$

Proc $=$ Let + Procedures

$$
\begin{array}{lll}
\boldsymbol{P} & \rightarrow \boldsymbol{E} \\
\boldsymbol{E} & \rightarrow & \boldsymbol{n} \\
& \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \\
& \boldsymbol{E}-\boldsymbol{E} \\
& \text { iszero } \boldsymbol{E} \\
& \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \operatorname{read} \\
& \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \\
\boldsymbol{E} \boldsymbol{E}
\end{array}
$$

Example

- let $\mathrm{f}=\operatorname{proc}(\mathrm{x})(\mathrm{x}-11)$ in (f (f 77))

Example

- let $\mathrm{f}=\operatorname{proc}(\mathrm{x})(\mathrm{x}-11)$
in (f (f 77))
- ($(\operatorname{proc}(f)(f(f 77)))(p r o c(x)(x-11)))$

Free/Bound Variables of Procedures

- An occurrence of the variable x is bound when it occurs without definitions in the body of a procedure whose formal parameter is x .
- Otherwise, the variable is free.
- Examples:
- proc (y) ($\mathrm{x}+\mathrm{y}$)
- proc (x) (let $y=1$ in $x+y+z)$
- proc (x) (proc (y) ($x+y$))
- let $x=1$ in proc (y) ($x+y$)
- let $x=1$ in proc (y) ($x+y+z$)

Static vs. Dynamic Scoping

What is the result of the program?

```
let x = 1
in let f = proc (y) (x+y)
    in let x = 2
    in let g = proc (y) (x+y)
        in (f 1) + (g 1)
```


Static vs. Dynamic Scoping

What is the result of the program?

```
let x = 1
in let f = proc (y) ( }\textrm{x}+\textrm{y}\mathrm{ )
    in let x = 2
        in let g = proc (y) (x+y)
        in (f 1) + (g 1)
```

Two ways to determine free variables of procedures:

- In static scoping (lexical scoping), the procedure body is evaluated in the environment where the procedure is defined (i.e. procedure-creation environment).
- In dynamic scoping, the procedure body is evaluated in the environment where the procedure is called (i.e. calling environment)

Exercises

What is the result of the program?

- In static scoping:
- In dynamic scoping:
(1) let $\mathrm{a}=3$

$$
\begin{aligned}
& \text { in let } p=\operatorname{proc}(z) a \\
& \text { in let } f=\operatorname{proc}(x)(p 0) \\
& \text { in let } a=5 \\
& \text { in (f 2) }
\end{aligned}
$$

(2) let $\mathrm{a}=3$

$$
\begin{aligned}
& \text { in let } p=\operatorname{proc}(z) a \\
& \text { in let } f=\operatorname{proc}(a)(p 0) \\
& \text { in let } a=5 \\
& \text { in (f 2) }
\end{aligned}
$$

Why Static Scoping?

Most modern languages use static scoping. Why?

- Reasoning about programs is much simpler in static scoping.
- In static scoping, renaming bound variables by their lexical definitions does not change the semantics, which is unsafe in dynamic scoping.

```
let x = 1
in let f = proc (y) (x+y)
    in let x = 2
    in let g = proc (y) (x+y)
        in (f 1) + (g 1)
```

- In static scoping, names are resolved at compile-time.
- In dynamic scoping, names are resolved only at runtime.

Semantics of Procedures: Static Scoping

- Domain:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure } \\
\text { Procedure } & =\operatorname{Var} \times \boldsymbol{E} \times \text { Env } \\
\text { Env } & =\text { Var } \rightarrow \text { Val }
\end{aligned}
$$

The procedure value is called closures. The procedure is closed in its creation environment.

Semantics of Procedures: Static Scoping

- Domain:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure } \\
\text { Procedure } & =\operatorname{Var} \times \boldsymbol{E} \times \text { Env } \\
\text { Env } & =\text { Var } \rightarrow \text { Val }
\end{aligned}
$$

The procedure value is called closures. The procedure is closed in its creation environment.

- Semantics rules:

$$
\begin{gathered}
\overline{\rho \vdash \operatorname{proc} x E \Rightarrow(x, E, \rho)} \\
\frac{\rho \vdash E_{1} \Rightarrow\left(x, E, \rho^{\prime}\right) \quad \rho \vdash E_{2} \Rightarrow v}{\rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}} \quad[x \mapsto v] \rho^{\prime} \vdash E \Rightarrow v^{\prime}
\end{gathered}
$$

Examples

[]$\vdash(\operatorname{proc}(x)(x)) 1 \Rightarrow 1$

Examples

$$
\begin{aligned}
& \text { let } x=1 \\
& {[] \vdash \text { in let } f=\operatorname{proc}(y)(x+y) \Rightarrow 4} \\
& \text { in let } x=2 \\
& \text { in }(f 3)
\end{aligned}
$$

Semantics of Procedures: Dynamic Scoping

- Domain:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure } \\
\text { Procedure } & =\operatorname{Var} \times \boldsymbol{E} \\
\text { Env } & =\text { Var } \rightarrow \text { Val }
\end{aligned}
$$

- Semantics rules:

$$
\overline{\rho \vdash \operatorname{proc} x} \boldsymbol{E} \Rightarrow(\boldsymbol{x}, \boldsymbol{E})
$$

$$
\begin{array}{ll}
\rho \vdash E_{1} \vdash(x, E) \quad & \rho \vdash E_{2} \Rightarrow v \quad[x \mapsto v] \rho \vdash E \Rightarrow v^{\prime} \\
& \rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}
\end{array}
$$

Examples

$$
\begin{aligned}
& \text { let } x=1 \\
& {[] \vdash \text { in let } f=\operatorname{proc}(y)(x+y) \Rightarrow 5} \\
& \text { in let } x=2 \\
& \text { in }(f 3)
\end{aligned}
$$

cf) Multiple Argument Procedures

- We can get the effect of multiple argument procedures by using procedures that return other procedures.
- ex) a function that takes two arguments and return their sum:
let $f=\operatorname{proc}(x) \operatorname{proc}(y)(x+y)$ in ($(\mathrm{f} 3) 4$)

Adding Recursive Procedures

The current language does not support recursive procedures, e.g.,
let $\mathrm{f}=\operatorname{proc}(\mathrm{x})(\mathrm{f} x)$
in (f 1)
for which evaluation gets stuck:

$$
[f \mapsto(x, f x,[])] \vdash f \Rightarrow(x, f x,[]) \quad \frac{[x \mapsto 1] \vdash f \Rightarrow ? \quad[x \mapsto 1] \vdash x \Rightarrow 1}{[x \mapsto 1] \vdash f x \Rightarrow ?}
$$

Two solutions:

- go back to dynamic scoping :-(
- modify the language syntax and semantics for procedure :-)

Recursion is Not Special in Dynamic Scoping

With dynamic scoping, recursive procedures require no special mechanism. Running the program
let $f=\operatorname{proc}(x)(f x)$ in (f 1)
via dynamic scoping semantics

$$
\begin{array}{ll}
\rho \vdash E_{1} \vdash(x, E) \quad & \rho \vdash E_{2} \Rightarrow v \quad[x \mapsto v] \rho \vdash E \Rightarrow v^{\prime} \\
& \rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}
\end{array}
$$

proceeds well:

$$
\frac{\frac{\vdots}{[f \mapsto(x, f x), x \mapsto 1] \vdash \mathrm{f} \times \Rightarrow}}{\frac{[f \mapsto(x, f x), x \mapsto 1] \vdash \mathrm{f} \mathrm{x} \Rightarrow}{[f \mapsto(x, f x)] \vdash \mathrm{f} 1 \Rightarrow}} \frac{\text { let } \mathrm{f}=\operatorname{proc}(\mathrm{x})(\mathrm{f} \text { x) in (f } 1) \Rightarrow}{}
$$

Adding Recursive Procedures

$P \rightarrow$	E
$E \rightarrow$	n
,	\boldsymbol{x}
,	$\boldsymbol{E}+\boldsymbol{E}$
\|	$\boldsymbol{E}-\boldsymbol{E}$
\|	iszero \boldsymbol{E}
\|	if \boldsymbol{E} then \boldsymbol{E} else \boldsymbol{E}
1	$\begin{aligned} & \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\ & \text { read } \end{aligned}$
1	letrec $f(x)=E$ in E $\operatorname{proc} \boldsymbol{x} \boldsymbol{E}$
1	$\boldsymbol{E} \boldsymbol{E}$

Example

```
letrec double(x) =
    if zero?(x) then 0 else ((double (x-1)) + 2)
in (double 1)
```


Semantics of Recursive Procedures

- Domain:

$$
\begin{aligned}
\text { Val } & =\mathbb{Z}+\text { Bool }+ \text { Procedure }+ \text { RecProcedure } \\
\text { Procedure } & =\text { Var } \times \boldsymbol{E} \times \text { Env } \\
\text { RecProcedure } & =\text { Var } \times \operatorname{Var} \times \boldsymbol{E} \times \text { Env } \\
\text { Env } & =\text { Var } \rightarrow \text { Val }
\end{aligned}
$$

- Semantics rules:

$$
\begin{gathered}
\frac{\left[f \mapsto\left(f, x, E_{1}, \rho\right)\right] \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \operatorname{letrec} f(x)=E_{1} \text { in } E_{2} \Rightarrow v} \\
\rho \vdash E_{1} \Rightarrow\left(f, x, E, \rho^{\prime}\right) \quad \rho \vdash E_{2} \Rightarrow v \\
{\left[x \mapsto v, f \mapsto\left(f, x, E, \rho^{\prime}\right)\right] \rho^{\prime} \vdash E \Rightarrow v^{\prime}} \\
\rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \Rightarrow(f, x, f x,[]) \quad \overline{[x \mapsto 1, f \mapsto(f, x, f x,[])] \vdash f x \Rightarrow} \\
& \frac{[f \mapsto(f, x, f x,[])] \vdash f 1, f \mapsto(f, x, f x,[])] \vdash f x \Rightarrow}{[f \vdash \text { letrec } f(x)=f x \text { in } f 1 \Rightarrow}
\end{aligned}
$$

Summary: The Proc Language

A programming language with expressions and procedures:
Syntax

$$
\begin{array}{lll}
\boldsymbol{P} & \rightarrow \boldsymbol{E} \\
\boldsymbol{E} & \rightarrow \boldsymbol{n} \\
& \boldsymbol{x} \\
& \boldsymbol{E}+\boldsymbol{E} \\
& \boldsymbol{E}-\boldsymbol{E} \\
& \text { iszero } \boldsymbol{E} \\
& \text { if } \boldsymbol{E} \text { then } \boldsymbol{E} \text { else } \boldsymbol{E} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \text { read } \\
& \text { letrec } \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{E} \text { in } \boldsymbol{E} \\
& \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \\
\boldsymbol{E} \boldsymbol{E}
\end{array}
$$

Summary

Semantics

$$
\begin{aligned}
& \overline{\rho \vdash n \Rightarrow n} \quad \overline{\rho \vdash x \Rightarrow \rho(x)} \quad \frac{\rho \vdash E_{1} \Rightarrow n_{1} \quad \rho \vdash E_{2} \Rightarrow n_{2}}{\rho \vdash E_{1}+E_{2} \Rightarrow n_{1}+n_{2}} \\
& \frac{\rho \vdash E \Rightarrow 0}{\rho \vdash \text { iszero } E \Rightarrow \text { true }} \quad \frac{\rho \vdash E \Rightarrow n}{\rho \vdash \text { iszero } E \Rightarrow \text { false }} n \neq 0 \quad \overline{\rho \vdash \text { read } \Rightarrow n} \\
& \begin{array}{ll}
\frac{\rho \vdash E_{1} \Rightarrow \text { true }}{\rho \vdash \text { if } E_{1} \text { then } E_{2} \text { else } E_{3} \Rightarrow v} \quad \rho \vdash E_{2} \Rightarrow v & \frac{\rho \vdash E_{1} \Rightarrow \text { false } \quad \rho \vdash E_{3} \Rightarrow v}{\rho \vdash \text { if } \boldsymbol{E}_{1} \text { then } E_{2} \text { else } \boldsymbol{E}_{3} \Rightarrow \boldsymbol{v}}
\end{array} \\
& \frac{\rho \vdash E_{1} \Rightarrow v_{1} \quad\left[x \mapsto v_{1}\right] \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \text { let } x=E_{1} \text { in } E_{2} \Rightarrow v} \quad \frac{\left[f \mapsto\left(f, x, E_{1}, \rho\right)\right] \rho \vdash E_{2} \Rightarrow v}{\rho \vdash \operatorname{letrec} f(x)=E_{1} \text { in } E_{2} \Rightarrow v} \\
& \overline{\rho \vdash \operatorname{proc} \boldsymbol{x} \boldsymbol{E} \Rightarrow(\boldsymbol{x}, \boldsymbol{E}, \boldsymbol{\rho})} \\
& \frac{\rho \vdash E_{1} \vdash\left(x, E, \rho^{\prime}\right) \quad \rho \vdash E_{2} \Rightarrow v \quad[x \mapsto v] \rho^{\prime} \vdash E \Rightarrow v^{\prime}}{\rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}} \\
& \begin{array}{cc}
\rho \vdash E_{1} \Rightarrow\left(f, x, E, \rho^{\prime}\right) \quad \rho \vdash E_{2} \Rightarrow v \quad\left[x \mapsto v, f \mapsto\left(f, x, E, \rho^{\prime}\right)\right] \rho^{\prime} \vdash E \Rightarrow v^{\prime} \\
\rho \vdash E_{1} E_{2} \Rightarrow v^{\prime}
\end{array}
\end{aligned}
$$

Mid-term

- Homework 2 will replace mid-term exam.
- No class on 10/24(Tue) and 10/26(Thr).

