COSE212: Programming Languages

Lecture 15 - Lambda Calculus
 (Origin of Programming Languages)

Hakjoo Oh
2017 Fall

Syntactic Sugar

- Syntactic sugar is syntax that makes a language "sweet": it does not add expressiveness but makes programs easier to read and write.
- For example, we can "desugar" the let expression:

$$
\text { let } \boldsymbol{x}=\boldsymbol{E}_{1} \text { in } \boldsymbol{E}_{2} \stackrel{\text { desugar }}{\Longrightarrow}\left(\operatorname{proc} \boldsymbol{x} \boldsymbol{E}_{2}\right) \boldsymbol{E}_{\mathbf{1}}
$$

- Exercise) Desugar the program:

$$
\begin{gathered}
\text { let } x=1 \text { in } \\
\text { let } y=2 \text { in } \\
x+y
\end{gathered}
$$

Syntactic Sugar

Q) Identify all syntactic sugars of the language:

$\boldsymbol{E} \rightarrow$	n
\|	\boldsymbol{x}
\|	$\boldsymbol{E}+\boldsymbol{E}$
\|	$\boldsymbol{E}-\boldsymbol{E}$
\|	iszero \boldsymbol{E}
\|	if \boldsymbol{E} then \boldsymbol{E} else \boldsymbol{E}
\|	let $\boldsymbol{x}=\boldsymbol{E}$ in \boldsymbol{E}
	letrec $f(x)=E$ in E $\operatorname{proc} \boldsymbol{x} \boldsymbol{E}$
	$\boldsymbol{E} E$

Lambda Calculus ($\boldsymbol{\lambda}$-Calculus)

- By removing all syntactic sugars from a language, we obtain a minimal language, called lambda calculus:

\boldsymbol{e}	\rightarrow	\boldsymbol{x}	variables
	$\boldsymbol{\lambda x . e}$	abstraction	
$\boldsymbol{e} \boldsymbol{e}$	application		

Origins of Programming Languages and Computer

- In 1935, Church developed $\boldsymbol{\lambda}$-calculus as a formal system for mathematical logic and argued that any computable function on natural numbers can be computed with $\boldsymbol{\lambda}$-calculus. Since then, λ-calculus became the model of programming languages.
- In 1936, Turing independently developed Turing machine and argued that any computable function on natural numbers can be computed with the machine. Since then, Turing machine became the model of computers.

Church-Turing Thesis

- A surprising fact is that the classes of $\boldsymbol{\lambda}$-calculus and Turing machines can compute coincide even though they were developed independently.
- Church and Turing proved that the classes of computable functions defined by $\boldsymbol{\lambda}$-calculus and Turing machine are equivalent.

A function is $\boldsymbol{\lambda}$-computable if and only if Turing computable.

- This equivalence has led mathematicians and computer scientists to believe that these models are "universal": A function is computable if and only if $\boldsymbol{\lambda}$-computable if and only if Turing computable.

Impact of $\boldsymbol{\lambda}$-Calculus

λ-calculus had immense impacts on programming languages.

- It has been the core of functional programming languages (e.g., Lisp, ML, Haskell, Scala, etc).
- Lambdas in other languages:
- Java8

$$
\text { (int } n \text {, int } m \text {) }->n+m
$$

- $\mathrm{C}++11$

$$
\text { [] (int } x \text {, int } y \text {) \{ return } x+y \text {; \} }
$$

- Python

$$
\text { (lambda } \mathrm{x}, \mathrm{y}: \mathrm{x}+\mathrm{y} \text {) }
$$

- JavaScript

$$
\text { function (} \mathrm{a}, \mathrm{~b} \text {) }\{\text { return } \mathrm{a}+\mathrm{b}\}
$$

Syntax of Lambda Calculus

\boldsymbol{e}	$\rightarrow \boldsymbol{x}$	variables
$\boldsymbol{\lambda x . e}$	abstraction	
$\boldsymbol{e} \boldsymbol{e}$	application	

- Examples:

\[

\]

- Conventions when writing $\boldsymbol{\lambda}$-expressions:
(1) Application associates to the left, e.g., $s t u=(s t) u$
(2) The body of an abstraction extends as far to the right as possible, e.g., $\lambda x . \lambda y . x y x=\lambda x .(\lambda y \cdot((x y) x))$

Bound and Free Variables

- An occurrence of variable \boldsymbol{x} is said to be bound when it occurs inside $\boldsymbol{\lambda} \boldsymbol{x}$, otherwise said to be free.
- $\lambda y .(x y)$
- $\lambda x . x$
- $\lambda z . \lambda x \cdot \lambda x .(y z)$
- $(\lambda x . x) x$
- Expressions without free variables is said to be closed expressions or combinators.

Evaluation

To evaluate $\boldsymbol{\lambda}$-expression \boldsymbol{e},
(1) Find a sub-expression of the form:

$$
\left(\lambda x \cdot e_{1}\right) e_{2}
$$

Expressions of this form are called "redex" (reducible expression).
(2) Rewrite the expression by substituting the \boldsymbol{e}_{2} for every free occurrence of \boldsymbol{x} in \boldsymbol{e}_{1} :

$$
\left(\lambda x . e_{1}\right) e_{2} \rightarrow\left[x \mapsto e_{2}\right] e_{1}
$$

This rewriting is called $\boldsymbol{\beta}$-reduction
Repeat the above two steps until there are no redexes.

Evaluation

- $\lambda x . x$
- $(\lambda x . x) y$
- $(\lambda x . x y)$
- $(\lambda x . x y) z$
- $(\lambda x .(\lambda y . x)) z$
- $(\lambda x .(\lambda x . x)) z$
- $(\lambda x .(\lambda y . x)) y$
- $(\lambda x .(\lambda y . x y))(\lambda x . x) z$

Evaluation Strategy

- In a lambda expression, multiple redexes may exist. Which redex to reduce next?

$$
\lambda x . x(\lambda x . x(\lambda z .(\lambda x . x) z))=i d(i d(\lambda z . i d z))
$$

redexes:

$$
\begin{aligned}
& \frac{i d(i d(\lambda z . i d z))}{i d(i d(\lambda z . i d z))} \\
& i d(i d(\lambda z . i d z))
\end{aligned}
$$

- Evaluation strategies:
- Normal order
- Call-by-name
- Call-by-value

Normal order strategy

Reduce the leftmost, outermost redex first:

$$
\begin{aligned}
& \quad \frac{i d(i d(\lambda z . i d z))}{\rightarrow} \frac{\underline{i d(\lambda z . i d z))}}{\lambda z . \underline{i d z}} \\
& \rightarrow \lambda z . \bar{z} \\
& \rightarrow
\end{aligned}
$$

The evaluation is deterministic (i.e., partial function).

Call-by-name strategy

Follow the normal order reduction, not allowing reductions inside abstractions:

$$
\begin{aligned}
& \rightarrow \frac{i d(i d(\lambda z . i d z))}{i d(\lambda z . i d z))} \\
& \rightarrow \\
& \rightarrow
\end{aligned}
$$

The call-by-name strategy is non-strict (or lazy) in that it evaluates arguments that are actually used.

Call-by-value strategy

Reduce the outermost redex whose right-hand side has a value (a term that cannot be reduced any further):

$$
\begin{aligned}
& i d(\overline{i d(\lambda z . i d z)}) \\
\rightarrow & \frac{i d(\overline{\lambda z . i d z)})}{\lambda z . i d z} \\
\rightarrow &
\end{aligned}
$$

The call-by-name strategy is strict in that it always evaluates arguments, whether or not they are used in the body.

Compiling to Lambda Calculus

Consider the source language:

$E \rightarrow$	true
	false
	n
	\boldsymbol{x}
	$\boldsymbol{E}+\boldsymbol{E}$
	iszero \boldsymbol{E}
	if \boldsymbol{E} then \boldsymbol{E} else \boldsymbol{E}
	let $\boldsymbol{x}=\boldsymbol{E}$ in \boldsymbol{E}
	$\begin{aligned} & \text { letrec } f(x)=E \text { in } E \\ & \text { proc } x E \end{aligned}$
	$\boldsymbol{E} \boldsymbol{E}$

Define the translation procedure from \boldsymbol{E} to $\boldsymbol{\lambda}$-calculus.

Compiling to Lambda Calculus

$\underline{\boldsymbol{E}}$: the translation result of \boldsymbol{E} in λ-calculus

$$
\begin{aligned}
& \underline{\text { true }}=\lambda t . \lambda f . t \\
& \text { false }=\lambda t . \lambda f . f \\
& \underline{0}=\lambda s . \lambda z . z \\
& \underline{1}=\lambda s . \lambda z .(s z) \\
& \underline{n}=\lambda s \cdot \lambda z \cdot\left(s^{n} z\right) \\
& \underline{x}=\boldsymbol{x} \\
& \underline{E_{1}+E_{2}}=(\lambda n \cdot \lambda m \cdot \lambda s . \lambda z . m s(n s z)) \underline{E_{1}} \underline{E_{2}} \\
& \text { iszero } \boldsymbol{E}=\lambda m . m(\lambda x . f a l s e) \underline{\text { true }} \\
& \text { if } \boldsymbol{E}_{1} \text { then } \boldsymbol{E}_{2} \text { else } \boldsymbol{E}_{3}=\boldsymbol{E}_{1} \underline{\boldsymbol{E}_{2}} \underline{\boldsymbol{E}_{3}} \\
& \text { let } \boldsymbol{x}=\boldsymbol{E}_{1} \text { in } \boldsymbol{E}_{2}=\left(\lambda x . \underline{\boldsymbol{E}_{2}}\right) \underline{\boldsymbol{E}_{1}} \\
& \text { letrec } f(x)=\boldsymbol{E}_{1} \text { in } \boldsymbol{E}_{2}=\text { let } \boldsymbol{f}=\boldsymbol{Y}\left(\boldsymbol{\lambda} f . \boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{E}_{1}\right) \text { in } \boldsymbol{E}_{2} \\
& \underline{\operatorname{proc} \boldsymbol{x} \boldsymbol{E}}=\boldsymbol{\lambda} \boldsymbol{x} \cdot \underline{\boldsymbol{E}} \\
& \underline{E_{1} E_{2}}=\underline{E_{1}} \underline{E_{2}}
\end{aligned}
$$

Correctness of Compilation

Theorem
For any expression \boldsymbol{E},

$$
\llbracket \underline{E} \rrbracket=\llbracket E \rrbracket
$$

where $\llbracket \boldsymbol{E} \rrbracket$ denotes the value that results from evaluating \boldsymbol{E}.

Examples：Booleans

$$
\begin{aligned}
\text { if true then } 0 \text { else } 1 & =\underline{t r u e} \underline{0} \underline{1} \\
& =(\lambda t \cdot \lambda f \cdot t) \underline{0} \underline{1} \\
& =\underline{0} \\
& =\lambda s . \lambda z . z
\end{aligned}
$$

Note that

$$
\llbracket \text { if true then } 0 \text { else 1】=【if true then } 0 \text { else 1】 }
$$

Example: Numerals

$$
\begin{aligned}
& \underline{1+2}=(\lambda n \cdot \lambda m \cdot \lambda s . \lambda z . m s(n s z)) \underline{1} \underline{2} \\
& =\lambda s . \lambda z . \underline{2} s(\underline{1} s z) \\
& =\lambda s . \lambda z . \underline{2} s(\lambda s . \lambda z .(s z) s z) \\
& =\lambda s . \lambda z .2 s(s z) \\
& =\lambda s . \lambda z \cdot(\lambda s . \lambda z .(s(s z))) s(s z) \\
& =\lambda s . \lambda z . s(s(s z)) \\
& =\underline{3}
\end{aligned}
$$

Recursion

- For example, the factorial function

$$
f(n)=\text { if } n=0 \text { then } 1 \text { else } n * f(n-1)
$$

is encoded by

$$
\text { fact }=Y(\lambda f . \lambda n \text {.if } n=0 \text { then } 1 \text { else } n * f(n-1))
$$

where \boldsymbol{Y} is the Y -combinator (or fixed point combinator):

$$
Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

- Then, fact \boldsymbol{n} computes \boldsymbol{n} !.
- Recursive functions can be encoded by composing non-recursive functions!

Recursion

Let $F=\lambda f$. $\boldsymbol{\lambda} n$.if $n=\mathbf{0}$ then $\mathbf{1}$ else $\boldsymbol{n} \boldsymbol{*}(\boldsymbol{n} \mathbf{- 1)}$ and $G=\lambda x . F(x x)$.
fact 1
$=\left(\begin{array}{ll}\boldsymbol{Y}\end{array}\right) 1$
$=(\lambda f \cdot((\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) F) 1$
$=((\lambda x . F(x x))(\lambda x . F(x x))) 1$
$=(G G) 1$
$=(F(G G)) 1$
$=(\lambda n$.if $n=0$ then 1 else $n *(G G)(n-1)) 1$
$=$ if $1=0$ then 1 else $1 *(G G)(1-1))$
$=$ if false then 1 else $1 *(G G)(1-1))$
$=1 *(G G)(1-1)$
$=1 *(F(G G))(1-1)$
$=1 *(\lambda n$.if $n=0$ then 1 else $n *(G G)(n-1))(1-1)$
$=1 *$ if $(1-1)=0$ then 1 else $(1-1) *(G G)((1-1)-1)$
$=1 * 1$

Summary

- λ-calculus is a minimal programming language.
- Syntax: $e \rightarrow x|\lambda x . e| e e$
- Semantics: $\boldsymbol{\beta}$-reduction
- Yet, $\boldsymbol{\lambda}$-calculus is Turing-complete.

