COSE212: Programming Languages

Lecture 1 - Inductive Definitions (1)

Hakjoo Oh
2017 Fall

Inductive Definitions

Inductive definition (induction) is widely used in the study of programming languages and computer science in general: e.g.,

- The syntax and semantics of programming languages
- Data structures (e.g. lists, trees, graphs, etc)

Inductive Definitions

Inductive definition (induction) is widely used in the study of programming languages and computer science in general: e.g.,

- The syntax and semantics of programming languages
- Data structures (e.g. lists, trees, graphs, etc)

Induction is a technique for formally defining a set:

- The set is defined in terms of itself.
- The only way of defining an infinite set by a finite means.

Inductive Definitions

Inductive definition (induction) is widely used in the study of programming languages and computer science in general: e.g.,

- The syntax and semantics of programming languages
- Data structures (e.g. lists, trees, graphs, etc)

Induction is a technique for formally defining a set:

- The set is defined in terms of itself.
- The only way of defining an infinite set by a finite means.

Three styles to inductive definition:

- Top-down
- Bottom-up
- Rules of inference

Example (Top-Down)

Definition (\boldsymbol{S})
A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

Example (Top-Down)

Definition (\boldsymbol{S})
A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

- Inductive definition of a set of natural numbers: $S \subseteq \mathbb{N}=\{0,1, \ldots\}$

Example (Top-Down)

Definition (\boldsymbol{S})

A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

- Inductive definition of a set of natural numbers: $S \subseteq \mathbb{N}=\{0,1, \ldots\}$
- $\{0,3,6,9, \ldots\} \subseteq S$

Example (Top-Down)

Definition (\boldsymbol{S})

A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

- Inductive definition of a set of natural numbers: $S \subseteq \mathbb{N}=\{0,1, \ldots\}$
- $\{0,3,6,9, \ldots\} \subseteq S$
- $\{0,3,6,9, \ldots\} \supseteq S$

Example (Top-Down)

Definition (\boldsymbol{S})

A natural number \boldsymbol{n} is in \boldsymbol{S} if and only if
(1) $n=0$, or
(2) $n-3 \in S$.

- Inductive definition of a set of natural numbers: $S \subseteq \mathbb{N}=\{0,1, \ldots\}$
- $\{0,3,6,9, \ldots\} \subseteq S$
- $\{0,3,6,9, \ldots\} \supseteq S$

$$
S=\{0,3,6,9, \ldots\}
$$

Formal Proofs

Lemma

$\{0,3,6,9, \ldots\} \subseteq S$

By induction. To show: $3 \boldsymbol{k} \in S$ for all $k \in \mathbb{N}$.
(1) Base case: $3 k \in S$ when $k=0$.
(O) Inductive case: Assume $3 k \in S$ (Induction Hypothesis, I.H.).

To show is $3 \cdot(k+1) \in S$, which holds because $3 \cdot(k+1)-3=3 k \in S$ by the induction hypothesis.

Lemma

$\{0,3,6,9, \ldots\} \supseteq S$
By proof by contradiction. Let $n=3 k+q(q=1$ or 2$)$ and assume $n \in S$. By the definition of $S, n-3, n-6, \ldots, n-3 k \in S$. Thus, S must include 1 or $\mathbf{2}$, a contradiction.

A Bottom-up Definition

Definition (S)
S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(0) $0 \in S$, and
(0) if $n \in S$, then $n+3 \in S$.

A Bottom-up Definition

Definition (S)
S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(1) $0 \in S$, and
© if $n \in S$, then $n+3 \in S$.

- The two conditions imply $\{0,3,6,9, \ldots\} \subseteq S$.

A Bottom-up Definition

Definition (S)

S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(1) $0 \in S$, and
(0) if $n \in S$, then $n+3 \in S$.

- The two conditions imply $\{0,3,6,9, \ldots\} \subseteq S$.
- The two conditions do not imply $\{\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \ldots\} \supseteq \boldsymbol{S}$, e.g., \mathbb{N}.

A Bottom-up Definition

Definition (\boldsymbol{S})

S is the smallest set such that $S \subseteq \mathbb{N}$ and S satisfies the following two conditions:
(1) $0 \in S$, and
(0) if $n \in S$, then $n+3 \in S$.

- The two conditions imply $\{0,3,6,9, \ldots\} \subseteq S$.
- The two conditions do not imply $\{\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \ldots\} \supseteq \boldsymbol{S}$, e.g., \mathbb{N}.
- By requiring S to be the smallest such a set,

$$
S=\{0,3,6,9, \ldots\}
$$

A Bottom-up Definition

Definition (\boldsymbol{S})

\boldsymbol{S} is the smallest set such that $S \subseteq \mathbb{N}$ and \boldsymbol{S} satisfies the following two conditions:
(1) $0 \in S$, and
(2) if $n \in S$, then $n+3 \in S$.

- The two conditions imply $\{0,3,6,9, \ldots\} \subseteq S$.
- The two conditions do not imply $\{\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \ldots\} \supseteq \boldsymbol{S}$, e.g., \mathbb{N}.
- By requiring S to be the smallest such a set,

$$
S=\{0,3,6,9, \ldots\}
$$

- The smallest set satisfying the conditions is unique.
- Proof) If S_{1} and S_{2} satisfy the conditions and are both smallest, then $\boldsymbol{S}_{1} \subseteq \boldsymbol{S}_{\mathbf{2}}$ and $\boldsymbol{S}_{2} \subseteq \boldsymbol{S}_{\mathbf{1}}$. Therefore, $\boldsymbol{S}_{1}=\boldsymbol{S}_{\mathbf{2}}$ (\subseteq is anti-symmetric).

Rules of Inference

$$
\frac{A}{B}
$$

- A: hypothesis (antecedent)
- \boldsymbol{B} : conclusion (consequent)
- "if \boldsymbol{A} is true then \boldsymbol{B} is also true".
- \bar{B} : axiom.

Defining a Set by Rules of Inferences

Definition

$$
\begin{gathered}
\overline{0} \in S \\
\frac{n \in S}{(n+3) \in S}
\end{gathered}
$$

Interpret the rules as follows:
"A natural number \boldsymbol{n} is in \boldsymbol{S} iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"

Defining a Set by Rules of Inferences

Definition

$$
\begin{gathered}
\overline{0} \in S \\
\frac{n \in S}{(n+3) \in S}
\end{gathered}
$$

Interpret the rules as follows:
"A natural number \boldsymbol{n} is in \boldsymbol{S} iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"
ex) $\mathbf{3} \in S$ because

$\overline{\mathbf{0} \in \boldsymbol{S}}$ the axiom

Defining a Set by Rules of Inferences

Definition

$$
\begin{gathered}
\overline{0} \in S \\
\frac{n \in S}{(n+3) \in S}
\end{gathered}
$$

Interpret the rules as follows:
"A natural number \boldsymbol{n} is in \boldsymbol{S} iff $\boldsymbol{n} \in \boldsymbol{S}$ can be derived from the axiom by applying the inference rules finitely many times"
ex) $\mathbf{3} \in S$ because

$$
\begin{aligned}
& \overline{\mathbf{0 \in S}} \\
& \overline{3 \in S}
\end{aligned} \text { the axiom }
$$

Note that this interpretation enforces that S is the smallest set closed under the inference rules.

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x}{x+y}
$$

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x}{x+y}
$$

(2) What set is defined by the following inductive rules?

$$
\overline{()} \quad \frac{s}{(s)} \quad \frac{s}{s s}
$$

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x y}{x+y}
$$

(2) What set is defined by the following inductive rules?

$$
\overline{()} \quad \frac{s}{(s)} \quad \frac{s}{s s}
$$

(3) Define the following set as rules of inference:

$$
S=\{a, b, a a, a b, b a, b b, a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b, \ldots\}
$$

Exercises

(1) What set is defined by the following inductive rules?

$$
\overline{3} \quad \frac{x}{x+y}
$$

(2) What set is defined by the following inductive rules?

$$
\overline{()} \quad \frac{s}{(s)} \quad \frac{s}{s s}
$$

(3) Define the following set as rules of inference:

$$
S=\{a, b, a a, a b, b a, b b, a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b, \ldots\}
$$

(9) Define the following set as rules of inference:

$$
S=\left\{x^{n} y^{n+1} \mid n \in \mathbb{N}\right\}
$$

Summary

In inductive definitions, a set is defined in terms of itself. Three styles:

- Top-down
- Bottom-up
- Rules of inference

In PL, we mainly use the rules-of-inference method.

