COSE212: Programming Languages

Lecture 1 — Inductive Definitions (1)

Hakjoo Oh 2017 Fall

Inductive Definitions

Inductive definition (induction) is widely used in the study of programming languages and computer science in general: e.g.,

- The syntax and semantics of programming languages
- Data structures (e.g. lists, trees, graphs, etc)

Inductive Definitions

Inductive definition (induction) is widely used in the study of programming languages and computer science in general: e.g.,

- The syntax and semantics of programming languages
- Data structures (e.g. lists, trees, graphs, etc)

Induction is a technique for formally defining a set:

- The set is defined in terms of itself.
- The only way of defining an infinite set by a finite means.

Inductive Definitions

Inductive definition (induction) is widely used in the study of programming languages and computer science in general: e.g.,

- The syntax and semantics of programming languages
- Data structures (e.g. lists, trees, graphs, etc)

Induction is a technique for formally defining a set:

- The set is defined in terms of itself.
- The only way of defining an infinite set by a finite means.

Three styles to inductive definition:

- Top-down
- Bottom-up
- Rules of inference

Definition (S)

- $\mathbf{0}$ n=0, or
- $n-3 \in S$.

Definition (S)

- $\mathbf{0}$ n=0, or
- $n-3 \in S$.
 - ullet Inductive definition of a set of natural numbers: $S\subseteq \mathbb{N}=\{0,1,\ldots\}$

Definition (S)

- $\mathbf{0}$ n=0, or
- $n-3 \in S$.
 - ullet Inductive definition of a set of natural numbers: $S\subseteq \mathbb{N}=\{0,1,\ldots\}$
 - $\{0, 3, 6, 9, \ldots\} \subseteq S$

Definition (S)

- $\mathbf{0}$ n=0, or
- $n-3 \in S$.
 - ullet Inductive definition of a set of natural numbers: $S\subseteq \mathbb{N}=\{0,1,\ldots\}$
 - $\{0, 3, 6, 9, \ldots\} \subseteq S$
 - $\{0, 3, 6, 9, \ldots\} \supseteq S$

Definition (S)

- $\mathbf{0}$ n=0, or
- $n-3 \in S$.
 - ullet Inductive definition of a set of natural numbers: $S\subseteq \mathbb{N}=\{0,1,\ldots\}$
 - $\{0, 3, 6, 9, \ldots\} \subseteq S$
 - $\{0, 3, 6, 9, \ldots\} \supset S$

$$S = \{0, 3, 6, 9, \ldots\}.$$

Formal Proofs

Lemma

$$\{0,3,6,9,\ldots\}\subseteq S$$

By induction. To show: $3k \in S$ for all $k \in \mathbb{N}$.

- lacksquare Base case: $3k \in S$ when k=0.
- ② Inductive case: Assume $3k \in S$ (Induction Hypothesis, I.H.). To show is $3 \cdot (k+1) \in S$, which holds because $3 \cdot (k+1) 3 = 3k \in S$ by the induction hypothesis.

Lemma

$$\{0,3,6,9,\ldots\}\supseteq S$$

By proof by contradiction. Let n=3k+q (q=1 or 2) and assume $n\in S$. By the definition of $S,\,n-3,\,n-6,\,\ldots,n-3k\in S$. Thus, S must include 1 or 2, a contradiction.

Definition (S)

S is the *smallest* set such that $S\subseteq \mathbb{N}$ and S satisfies the following two conditions:

- $0 \in S$, and
- ② if $n \in S$, then $n+3 \in S$.

Definition (S)

S is the *smallest* set such that $S\subseteq\mathbb{N}$ and S satisfies the following two conditions:

- $0 \in S$, and
- 2 if $n \in S$, then $n+3 \in S$.
 - ullet The two conditions imply $\{0,3,6,9,\ldots\}\subseteq S$.

Definition (S)

S is the *smallest* set such that $S\subseteq\mathbb{N}$ and S satisfies the following two conditions:

- $0 \in S$, and
- 2 if $n \in S$, then $n+3 \in S$.
 - ullet The two conditions imply $\{0,3,6,9,\ldots\}\subseteq S$.
 - ullet The two conditions do not imply $\{0,3,6,9,\ldots\}\supseteq S$, e.g., $\mathbb N$.

Definition (S)

S is the *smallest* set such that $S\subseteq \mathbb{N}$ and S satisfies the following two conditions:

- $0 \in S$, and
- 2 if $n \in S$, then $n+3 \in S$.
 - ullet The two conditions imply $\{0,3,6,9,\ldots\}\subseteq S$.
 - ullet The two conditions do not imply $\{0,3,6,9,\ldots\}\supseteq S$, e.g., \mathbb{N} .
 - ullet By requiring S to be the **smallest** such a set,

$$S = \{0, 3, 6, 9, \ldots\}.$$

Definition (S)

S is the *smallest* set such that $S\subseteq\mathbb{N}$ and S satisfies the following two conditions:

- $0 \in S$, and
- 2 if $n \in S$, then $n+3 \in S$.
 - ullet The two conditions imply $\{0,3,6,9,\ldots\}\subseteq S$.
 - ullet The two conditions do not imply $\{0,3,6,9,\ldots\}\supseteq S$, e.g., \mathbb{N} .
 - ullet By requiring S to be the **smallest** such a set,

$$S = \{0, 3, 6, 9, \ldots\}.$$

- The smallest set satisfying the conditions is unique.
 - ▶ Proof) If S_1 and S_2 satisfy the conditions and are both smallest, then $S_1 \subseteq S_2$ and $S_2 \subseteq S_1$. Therefore, $S_1 = S_2$ (⊆ is anti-symmetric).

Rules of Inference

 $\frac{A}{B}$

- A: hypothesis (antecedent)
- B: conclusion (consequent)
- ullet "if $oldsymbol{A}$ is true then $oldsymbol{B}$ is also true".
- ullet $\overline{oldsymbol{B}}$: axiom.

Defining a Set by Rules of Inferences

Definition

$$\overline{0 \in S}$$

$$\frac{n \in S}{(n+3) \in S}$$

Interpret the rules as follows:

"A natural number n is in S iff $n \in S$ can be derived from the axiom by applying the inference rules finitely many times"

Defining a Set by Rules of Inferences

Definition

$$\overline{0 \in S}$$

$$\frac{n \in S}{(n+3) \in S}$$

Interpret the rules as follows:

"A natural number n is in S iff $n \in S$ can be derived from the axiom by applying the inference rules finitely many times"

ex)
$$\mathbf{3} \in S$$
 because

$$\overline{ {0 \in S} \atop {3 \in S} }$$
 the axiom the second rule

Defining a Set by Rules of Inferences

Definition

$$\overline{0 \in S}$$

$$\frac{n \in S}{(n+3) \in S}$$

Interpret the rules as follows:

"A natural number n is in S iff $n \in S$ can be derived from the axiom by applying the inference rules finitely many times"

ex)
$$\mathbf{3} \in S$$
 because

$$\overline{ {0 \in S} \atop {3 \in S} }$$
 the axiom the second rule

Note that this interpretation enforces that ${m S}$ is the smallest set closed under the inference rules.

What set is defined by the following inductive rules?

$$\overline{3} \qquad rac{x}{x+y}$$

What set is defined by the following inductive rules?

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

What set is defined by the following inductive rules?

$$\frac{s}{(s)}$$
 $\frac{s}{s}$

What set is defined by the following inductive rules?

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

What set is defined by the following inductive rules?

$$\frac{s}{(s)}$$
 $\frac{s}{s}$

Of the following set as rules of inference:

$$S = \{a,b,aa,ab,ba,bb,aaa,aab,aba,abb,baa,bab,bba,bbb,...\}$$

What set is defined by the following inductive rules?

$$\frac{x}{3}$$
 $\frac{x}{x+y}$

What set is defined by the following inductive rules?

$$\frac{s}{(s)}$$
 $\frac{s}{s}$

3 Define the following set as rules of inference:

$$S = \{a,b,aa,ab,ba,bb,aaa,aab,aba,abb,baa,bab,bba,bbb,...\}$$

Of Define the following set as rules of inference:

$$S = \{x^n y^{n+1} \mid n \in \mathbb{N}\}$$

Summary

In inductive definitions, a set is defined in terms of itself. Three styles:

- Top-down
- Bottom-up
- Rules of inference

In PL, we mainly use the rules-of-inference method.