Homework 5
COSE212, Fall 2017

Hakjoo Oh
Due: 12/9, 24:00

Academic Integrity / Assignment Policy

o All assignments must be your own work.

e Discussion with fellow students is encouraged including how to approach
the problem. However, your code must be your own.

— Discussion must be limited to general discussion and must not involve
details of how to write code.

You must write your code by yourself and must not look at someone
else’s code (including ones on the web).

Do not allow other students to copy your code.

— Do not post your code on the public web.

e Violating above rules gets you 0 points for the entire HW score.

Problem 1 Consider the language:

type exp =

and

CONST of int

VAR of var

ADD of exp * exp
SUB of exp * exp
MUL of exp * exp
DIV of exp * exp
READ

ISZERD of exp

IF of exp * exp * exp

LET of var * exp * exp

LETREC of var * var * exp * exp
PROC of var * exp

CALL of exp * exp

var = string

Define the function
expand : exp —> exp

that transforms an expression into a semantically-equivalent expression where
every let-bound variable in the original expression gets replaced by its definition.
Examples and caveat:

e Evaluating
expand (LET ("x", CONST 1, VAR "x"))

produces CONST 1.

e Evaluating

expand (
LET ("f", PROC ("x", VAR "x"),
IF (CALL (VAR "f", ISZERO (CONST 0)),
CALL (VAR "f", CONST 11),
CALL (VAR "f", CONST 22))))

produces

IF (CALL (PROC ("x", VAR "x"), ISZERO (CONST 0)),
CALL (PROC ("x", VAR "x"), CONST 11),
CALL (PROC ("x", VAR "x"), CONST 22))

e Unused definitions should not go away. For example, Evaluating
expand (LET ("x", ADD (CONST 1, ISZERO (CONST 0)), CONST 2))

should return LET ("x", ADD (CONST 1, ISZERO (CONST 0)), CONST 2),
not CONST 2.

Try it yourself As discussed in class, the function expand can be used for
implementing the let-polymorphic type system. The type checker typeof : exp
-> typ in Homework 4 does not support polymorphism and would not accept
the program:

typeof (
LET ("f", PROC ("x", VAR "x"),
IF (CALL (VAR "f", ISZERO (CONST 0)),
CALL (VAR "f", CONST 11),
CALL (VAR "f", CONST 22))));;

= Equations =
t2 = (t6 —> t7)
t7 = t6

(t5 -> bool) = t2
t5 = bool
int = int
(td -> t1)
t4 = int

(t3 > t1)
t3 = int

t2

t2

The program does not have type. Rejected.
With expand, however, the same type checking algorithm will succeed:

typeof (
expand (
LET ("f", PROC ("x", VAR "x"),
IF (CALL (VAR "f", ISZERO (CONST 0)),
CALL (VAR "f", CONST 11),
CALL (VAR "f", CONST 22)))));;

= Equations =

(t8 -> bool) = (t9 -> t10)
t10 = t9

t8 = bool

int = int

(t5 -> t1) = (t6 -> t7)
t7 = t6

tb = int

(t2 -> t1) = (£3 -> t4)
t4 = t3

t2 = int

= Substitution =

t3 |-> int

t4 |-> int

t2 |-> int

t6 |-> int

t7 |-> int

t1 |-> int

t5 |-> int

t9 |-> bool

t10 |-> bool

t8 |-> bool

Type of the given program: int

Problem 2 Consider the language of lambda calculus:

type lambda = V of var

| P of var * lambda

| C of lambda * lambda
and var = string

A program in lambda calculus is a variable, a procedure abstraction, or a call.
Write the function

check : lambda -> bool

that checks if a given program is well-formed. A program is said to be well-
formed if and only if the program does not contain free variables; i.e., every
variable name is bound by some procedure that encompasses the variable. For
example, well-formed programs are:

e P ("a", V "a"

e P ("a", P ("a", V "a"))

e P ("a", P ("b", C (V "a", V "b")))

eP ("a", C (V "a", P ("b", V "a")))
Ill-formed ones are:

e P ("a", V "b")

e P ("a", C (V "a", P ("b", V "c")))

° P (Ila"’ P (llbll’ C (V llall’ V Ilcll)))

